BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 10722477)

  • 1. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus.
    Novo DJ; Perlmutter NG; Hunt RH; Shapiro HM
    Antimicrob Agents Chemother; 2000 Apr; 44(4):827-34. PubMed ID: 10722477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cytometry of bacterial membrane potential and permeability.
    Shapiro HM
    Methods Mol Med; 2008; 142():175-86. PubMed ID: 18437314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci.
    Hammer KA; Heel KA
    Int J Antimicrob Agents; 2012 Sep; 40(3):239-45. PubMed ID: 22795655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique.
    Novo D; Perlmutter NG; Hunt RH; Shapiro HM
    Cytometry; 1999 Jan; 35(1):55-63. PubMed ID: 10554181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure.
    Wickens HJ; Pinney RJ; Mason DJ; Gant VA
    Antimicrob Agents Chemother; 2000 Mar; 44(3):682-7. PubMed ID: 10681338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiparameter flow cytometry of bacteria: implications for diagnostics and therapeutics.
    Shapiro HM
    Cytometry; 2001 Mar; 43(3):223-6. PubMed ID: 11170111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Staphylococcus aureus Membrane Potential Using Flow Cytometry.
    Hammer ND
    Methods Mol Biol; 2021; 2341():95-101. PubMed ID: 34264465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid flow cytometric antibiotic susceptibility assay for Staphylococcus aureus.
    Ordóñez JV; Wehman NM
    Cytometry; 1993 Oct; 14(7):811-8. PubMed ID: 8243210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain.
    Roth BL; Poot M; Yue ST; Millard PJ
    Appl Environ Microbiol; 1997 Jun; 63(6):2421-31. PubMed ID: 9172364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometric monitoring of antibiotic-induced injury in Escherichia coli using cell-impermeant fluorescent probes.
    Mortimer FC; Mason DJ; Gant VA
    Antimicrob Agents Chemother; 2000 Mar; 44(3):676-81. PubMed ID: 10681337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the bactericidal action of the food color additive phloxine B to gram-negative bacteria.
    Rasooly R
    FEMS Immunol Med Microbiol; 2005 Aug; 45(2):239-44. PubMed ID: 15949926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence monitoring of antibiotic-induced bacterial damage using flow cytometry.
    Suller MT; Lloyd D
    Cytometry; 1999 Mar; 35(3):235-41. PubMed ID: 10082304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COMPARATIVE PHYSIOLOGY OF ANTIBIOTIC-RESISTANT STRAINS OF STAPHYLOCOCCUS AUREUS.
    BROWN RL; EVANS JB
    J Bacteriol; 1963 Jun; 85(6):1409-12. PubMed ID: 14047237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Celecoxib potentiates antibiotic uptake by altering membrane potential and permeability in Staphylococcus aureus.
    Varma GYN; Kummari G; Paik P; Kalle AM
    J Antimicrob Chemother; 2019 Dec; 74(12):3462-3472. PubMed ID: 31586409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus.
    Xiong YQ; Mukhopadhyay K; Yeaman MR; Adler-Moore J; Bayer AS
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3114-21. PubMed ID: 16048912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil.
    Bouhdid S; Abrini J; Zhiri A; Espuny MJ; Manresa A
    J Appl Microbiol; 2009 May; 106(5):1558-68. PubMed ID: 19226402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils.
    Falkinham JO; Wall TE; Tanner JR; Tawaha K; Alali FQ; Li C; Oberlies NH
    Appl Environ Microbiol; 2009 May; 75(9):2735-41. PubMed ID: 19286796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial activity of ruthenium(II) polypyridyl complex manipulated by membrane permeability and cell morphology.
    Sun D; Zhang W; Lv M; Yang E; Zhao Q; Wang W
    Bioorg Med Chem Lett; 2015; 25(10):2068-73. PubMed ID: 25881824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dinuclear polypyridylruthenium(II) complexes: flow cytometry studies of their accumulation in bacteria and the effect on the bacterial membrane.
    Li F; Feterl M; Warner JM; Keene FR; Collins JG
    J Antimicrob Chemother; 2013 Dec; 68(12):2825-33. PubMed ID: 23873648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precursor-directed syntheses and biological evaluation of new elansolid derivatives.
    Steinmetz H; Zander W; Shushni MA; Jansen R; Gerth K; Dehn R; Dräger G; Kirschning A; Müller R
    Chembiochem; 2012 Aug; 13(12):1813-7. PubMed ID: 22807264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.