BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 10722635)

  • 1. Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface.
    Elliott DA; Clark DP
    Infect Immun; 2000 Apr; 68(4):2315-22. PubMed ID: 10722635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src.
    Chen XM; Huang BQ; Splinter PL; Cao H; Zhu G; McNiven MA; LaRusso NF
    Gastroenterology; 2003 Jul; 125(1):216-28. PubMed ID: 12851885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunodetection of the microvillous cytoskeleton molecules villin and ezrin in the parasitophorous vacuole wall of Cryptosporidium parvum (Protozoa: Apicomplexa).
    Bonnin A; Lapillonne A; Petrella T; Lopez J; Chaponnier C; Gabbiani G; Robine S; Dubremetz JF
    Eur J Cell Biol; 1999 Nov; 78(11):794-801. PubMed ID: 10604656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum.
    Chen XM; Huang BQ; Splinter PL; Orth JD; Billadeau DD; McNiven MA; LaRusso NF
    Infect Immun; 2004 May; 72(5):3011-21. PubMed ID: 15102814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells.
    VanDussen KL; Funkhouser-Jones LJ; Akey ME; Schaefer DA; Ackman K; Riggs MW; Stappenbeck TS; Sibley LD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42.
    Chen XM; Splinter PL; Tietz PS; Huang BQ; Billadeau DD; LaRusso NF
    J Biol Chem; 2004 Jul; 279(30):31671-8. PubMed ID: 15133042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microscopic observation of the invasion process of Cryptosporidium parvum in severe combined immunodeficiency mice.
    Umemiya R; Fukuda M; Fujisaki K; Matsui T
    J Parasitol; 2005 Oct; 91(5):1034-9. PubMed ID: 16419745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization.
    O'Hara SP; Gajdos GB; Trussoni CE; Splinter PL; LaRusso NF
    Infect Immun; 2010 Jul; 78(7):2927-36. PubMed ID: 20457792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptosporidium parvum infection requires host cell actin polymerization.
    Elliott DA; Coleman DJ; Lane MA; May RC; Machesky LM; Clark DP
    Infect Immun; 2001 Sep; 69(9):5940-2. PubMed ID: 11500478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of host calpain in the invasion of Cryptosporidium parvum.
    Perez-Cordon G; Nie W; Schmidt D; Tzipori S; Feng H
    Microbes Infect; 2011 Jan; 13(1):103-7. PubMed ID: 21087681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection.
    Forney JR; DeWald DB; Yang S; Speer CA; Healey MC
    Infect Immun; 1999 Feb; 67(2):844-52. PubMed ID: 9916099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host cell actin remodeling in response to Cryptosporidium.
    O'Hara SP; Small AJ; Chen XM; LaRusso NF
    Subcell Biochem; 2008; 47():92-100. PubMed ID: 18512344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host cell tropism underlies species restriction of human and bovine Cryptosporidium parvum genotypes.
    Hashim A; Clyne M; Mulcahy G; Akiyoshi D; Chalmers R; Bourke B
    Infect Immun; 2004 Oct; 72(10):6125-31. PubMed ID: 15385517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: a morphologic study.
    Huang BQ; Chen XM; LaRusso NF
    J Parasitol; 2004 Apr; 90(2):212-21. PubMed ID: 15165040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The enteric pathogen
    Dumaine JE; Sateriale A; Gibson AR; Reddy AG; Gullicksrud JA; Hunter EN; Clark JT; Striepen B
    Elife; 2021 Dec; 10():. PubMed ID: 34866573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of Inflammatory Responses in Splenocytes by Exosomes Released from Intestinal Epithelial Cells following
    Wang Y; Shen Y; Liu H; Yin J; Zhang XT; Gong AY; Chen X; Chen S; Mathy NW; Cao J; Chen XM
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30642905
    [No Abstract]   [Full Text] [Related]  

  • 18. Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7.
    Guérin A; Roy NH; Kugler EM; Berry L; Burkhardt JK; Shin JB; Striepen B
    Cell Host Microbe; 2021 Sep; 29(9):1407-1420.e5. PubMed ID: 34348092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptosporidium infections: molecular advances.
    Lendner M; Daugschies A
    Parasitology; 2014 Sep; 141(11):1511-32. PubMed ID: 24679517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptosporidium parvum regulation of human epithelial cell gene expression.
    Deng M; Lancto CA; Abrahamsen MS
    Int J Parasitol; 2004 Jan; 34(1):73-82. PubMed ID: 14711592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.