These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10722955)

  • 21. Effect of temperature increase during the tableting of pharmaceutical materials.
    Cespi M; Bonacucina G; Casettari L; Ronchi S; Palmieri GF
    Int J Pharm; 2013 May; 448(1):320-6. PubMed ID: 23518365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.
    Cunningham JC; Sinka IC; Zavaliangos A
    J Pharm Sci; 2004 Aug; 93(8):2022-39. PubMed ID: 15236452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel tool for the prediction of tablet sticking during high speed compaction.
    Abdel-Hamid S; Betz G
    Pharm Dev Technol; 2012; 17(6):747-54. PubMed ID: 21563986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic real-time in-die monitoring of the tablet compaction process-a proof of concept study.
    Stephens JD; Kowalczyk BR; Hancock BC; Kaul G; Cetinkaya C
    Int J Pharm; 2013 Feb; 442(1-2):20-6. PubMed ID: 22989980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method of estimating volume during powder compaction and the work of compaction on a rotary tablet press from measurements of applied vertical force.
    Oates RJ; Mitchell AG
    J Pharm Pharmacol; 1994 Apr; 46(4):270-5. PubMed ID: 8051609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a novel tablet machine for a tiny amount of powder and evaluation of capping tendency.
    Nakamura H; Sugino Y; Iwasaki T; Watano S
    Chem Pharm Bull (Tokyo); 2011; 59(12):1518-22. PubMed ID: 22130374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastic recovery in roll compaction simulation.
    Keizer HL; Kleinebudde P
    Int J Pharm; 2020 Jan; 573():118810. PubMed ID: 31678522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the die compaction of powders used in pharmaceutics.
    Aryanpour G; Farzaneh M
    Pharm Dev Technol; 2018 Jul; 23(6):628-635. PubMed ID: 28631521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products.
    Michaut F; Busignies V; Fouquereau C; de Barochez BH; Leclerc B; Tchoreloff P
    J Pharm Sci; 2010 Jun; 99(6):2874-85. PubMed ID: 20039388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the unloading conditions on capping and lamination: Study on a compaction simulator.
    Mazel V; Desbois L; Tchoreloff P
    Int J Pharm; 2019 Aug; 567():118468. PubMed ID: 31252150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite Element Modeling of Powder Compaction: Mini-Tablets in Comparison with Conventionally Sized Tablets.
    Naranjo Gómez LN; De Beer T; Kumar A
    Pharm Res; 2022 Sep; 39(9):2109-2118. PubMed ID: 36192615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of in-die powder densification parameters in the implementation of process analytical technologies for tablet production on industrial scale.
    Cespi M; Perinelli DR; Casettari L; Bonacucina G; Caporicci G; Rendina F; Palmieri GF
    Int J Pharm; 2014 Dec; 477(1-2):140-7. PubMed ID: 25304091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the tableting behavior of Ibuprofen DC 85 W.
    Al-Karawi C; Cech T; Bang F; Leopold CS
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1262-1272. PubMed ID: 29499616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating key properties of model excipients and binary powder blends using ultrasonic in-die measurements on a compaction simulator.
    Kern M; Riedel T; Breitkreutz J
    Int J Pharm; 2022 Feb; 613():121381. PubMed ID: 34920000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the deformation behavior of binary systems of methacrylic acid copolymers and hydroxypropyl methylcellulose using a compaction simulator.
    Tatavarti AS; Muller FX; Hoag SW
    Int J Pharm; 2008 Feb; 348(1-2):46-53. PubMed ID: 17714895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unloading and postcompression viscoelastic stress versus strain behavior of pharmaceutical solids.
    Danielson DW; Morehead WT; Rippie EG
    J Pharm Sci; 1983 Apr; 72(4):342-5. PubMed ID: 6864467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR
    Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring.
    Abdel-Hamid S; Alshihabi F; Betz G
    Int J Pharm; 2011 Jul; 413(1-2):29-35. PubMed ID: 21515348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing relationships among maxima of punch and die-wall stress and punch displacement during compaction of viscoelastic solids.
    Morehead WT; Rippie EG
    J Pharm Sci; 1990 Nov; 79(11):1020-2. PubMed ID: 2127289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.