These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10723888)

  • 1. Automatic on-line analyser of microbial growth using simultaneous measurements of impedance and turbidity.
    Madrid RE; Felice CJ; Valentinuzzi ME
    Med Biol Eng Comput; 1999 Nov; 37(6):789-93. PubMed ID: 10723888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multichannel bacterial growth analyser by impedance and turbidity.
    Madrid RE; Vercellone MI; Felice CJ; Valentinuzzi ME
    Med Biol Eng Comput; 1994 Nov; 32(6):670-2. PubMed ID: 7723428
    [No Abstract]   [Full Text] [Related]  

  • 3. Impedance bacteriometry: medium and interface contributions during bacterial growth.
    Felice CJ; Valentinuzzi ME; Vercellone MI; Madrid RE
    IEEE Trans Biomed Eng; 1992 Dec; 39(12):1310-3. PubMed ID: 1487295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An automated method for bacterial test by simultaneous measurement of electrical impedance and turbidity (author's transl)].
    Hashimoto H; Miike H; Ebina Y; Miyaji T
    Iyodenshi To Seitai Kogaku; 1981 Feb; 19(1):23-9. PubMed ID: 7026846
    [No Abstract]   [Full Text] [Related]  

  • 5. [Electrical impedance method for bacteriological study of drug sensitivity test].
    Wang H; Pang X; Wang A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):916-9. PubMed ID: 20842871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode and electrolyte impedance in the detection of bacterial growth.
    Hause LL; Komorowski RA; Gayon F
    IEEE Trans Biomed Eng; 1981 May; 28(5):403-10. PubMed ID: 7016724
    [No Abstract]   [Full Text] [Related]  

  • 7. Semielectronic turbidimeter for automated monitoring of bacterial growth in test tubes.
    Marcelis JH; Versteeg H; Beck HJ; Vinke D
    Appl Environ Microbiol; 1980 Feb; 39(2):281-4. PubMed ID: 6990863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection of bacterial growth in blood samples by a continuous-monitoring electrical impedance apparatus.
    Specter S; Throm R; Strauss R; Friedman H
    J Clin Microbiol; 1977 Nov; 6(5):489-93. PubMed ID: 336642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated blood culture system: the detection of anaerobic bacteria using a Malthus Microbiological Growth Analyser.
    McMaster JP; Barr JG; Campbell RR; Bennett RB; Smyth ET
    Ulster Med J; 1985 Oct; 54(2):133-9. PubMed ID: 3913089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance spectroscopy of changes in skin-electrode impedance induced by motion.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micro-scale multi-frequency reactance measurement technique to detect bacterial growth at low bio-particle concentrations.
    Sengupta S; Battigelli DA; Chang HC
    Lab Chip; 2006 May; 6(5):682-92. PubMed ID: 16652185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medium and interface components in impedance microbiology.
    Felice CJ; Valentinuzzi ME
    IEEE Trans Biomed Eng; 1999 Dec; 46(12):1483-7. PubMed ID: 10612907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance monitoring of bacterial activity.
    Ur A; Brown DF
    J Med Microbiol; 1975 Feb; 8(1):19-28. PubMed ID: 236390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: Application to Escherichia coli.
    Del Moral-Zamora B; Punter-Villagrassa J; Oliva-Brañas AM; Álvarez-Azpeitia JM; Colomer-Farrarons J; Samitier J; Homs-Corbera A; Miribel-Català PL
    Electrophoresis; 2015 May; 36(9-10):1130-41. PubMed ID: 25752513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing capacitance-based monitoring of microbial growth.
    Noble PA; Dziuba M; Harrison DJ; Albritton WL
    J Microbiol Methods; 1999 Jul; 37(1):51-64. PubMed ID: 10395464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of turbidity experiments to estimate the probability of growth for individual bacterial cells.
    Buss da Silva N; Mattar Carciofi BA; Ellouze M; Baranyi J
    Food Microbiol; 2019 Oct; 83():109-112. PubMed ID: 31202401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance as a parameter for bacterial growth in medical microbiology [proceedings].
    van Straten R; Sonderkamp HJ
    Antonie Van Leeuwenhoek; 1978; 44(3-4):458-9. PubMed ID: 378121
    [No Abstract]   [Full Text] [Related]  

  • 20. [The use of impedance measurements in medical microbiology].
    Strassburger J; Seidel R; Hossbach J
    Z Gesamte Hyg; 1989 Jul; 35(7):399-402. PubMed ID: 2678784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.