These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10723896)

  • 21. Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel.
    Ali N; Zaman A; Sajid M; Nieto JJ; Torres A
    Math Biosci; 2015 Nov; 269():94-103. PubMed ID: 26361287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical implementation of viscoelastic blood flow in a simplified arterial geometry.
    Rojas HA
    Med Eng Phys; 2007 May; 29(4):491-6. PubMed ID: 16919988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical investigations of pulsatile flow in stenosed artery.
    Bit A; Chattopadhyay H
    Acta Bioeng Biomech; 2014; 16(4):33-44. PubMed ID: 25598070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube.
    Gijsen FJ; Allanic E; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jul; 32(7):705-13. PubMed ID: 10400358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mathematical study of turbulent blood flow through an arterial bifurcation.
    Sidik WA; Mazumdar JN
    Australas Phys Eng Sci Med; 1994 Mar; 17(1):1-13. PubMed ID: 8198503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.
    Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036303. PubMed ID: 18851139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mathematical model of blood flow in a stenosed artery with post-stenotic dilatation and a forced field.
    Dhange M; Sankad G; Safdar R; Jamshed W; Eid MR; Bhujakkanavar U; Gouadria S; Chouikh R
    PLoS One; 2022; 17(7):e0266727. PubMed ID: 35776713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of diagnostic guidewire catheter presence on translesional hemodynamic measurements across significant coronary artery stenoses.
    Banerjee RK; Back LH; Back MR
    Biorheology; 2003; 40(6):613-35. PubMed ID: 14610312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulations of the blood flow through vertebral arteries.
    Jozwik K; Obidowski D
    J Biomech; 2010 Jan; 43(2):177-85. PubMed ID: 19909956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LES of non-Newtonian physiological blood flow in a model of arterial stenosis.
    Molla MM; Paul MC
    Med Eng Phys; 2012 Oct; 34(8):1079-87. PubMed ID: 22153320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel design of a noncylindric stent with beneficial effects on flow characteristics: an experimental and numerical flow study in an axisymmetric arterial model with sequential mild stenoses.
    Papaioannou TG; Christofidis CCh; Mathioulakis DS; Stefanadis CI
    Artif Organs; 2007 Aug; 31(8):627-38. PubMed ID: 17651118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of aortic irregularities on blood flow.
    Prahl Wittberg L; van Wyk S; Fuchs L; Gutmark E; Backeljauw P; Gutmark-Little I
    Biomech Model Mechanobiol; 2016 Apr; 15(2):345-60. PubMed ID: 26104133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pulmonary artery hemodynamics with varying degrees of valvular stenosis: an in vitro study.
    Sung HW; Hsu TL; Hsu CH; Hsu JC
    J Biomech; 1998 Dec; 31(12):1153-61. PubMed ID: 9882048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A scaling law for wall shear rate through an arterial stenosis.
    Siegel JM; Markou CP; Ku DN; Hanson SR
    J Biomech Eng; 1994 Nov; 116(4):446-51. PubMed ID: 7869720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis.
    Nakamura M; Sawada T
    J Biomech Eng; 1988 May; 110(2):137-43. PubMed ID: 3379935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.