These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10725089)

  • 1. Site-specifically labeled photoprotein-thyroxine conjugates using aequorin mutants containing unique cysteine residues: applications for binding assays (Part II).
    Lewis JC; Cullen LC; Daunert S
    Bioconjug Chem; 2000; 11(2):140-5. PubMed ID: 10725089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescence immunoassay for thyroxine employing genetically engineered mutant aequorins containing unique cysteine residues.
    Lewis JC; Daunert S
    Anal Chem; 2001 Jul; 73(14):3227-33. PubMed ID: 11476219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescent and biochemical properties of Cys-free Ca
    Eremeeva EV; Vysotski ES
    J Photochem Photobiol B; 2017 Sep; 174():97-105. PubMed ID: 28756158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence and secondary structure properties of aequorin mutants produced for site-specific conjugation and immobilization.
    Lewis JC; López-Moya JJ; Daunert S
    Bioconjug Chem; 2000; 11(1):65-70. PubMed ID: 10639087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin.
    Eremeeva EV; Markova SV; Frank LA; Visser AJ; van Berkel WJ; Vysotski ES
    Photochem Photobiol Sci; 2013 Jun; 12(6):1016-24. PubMed ID: 23525241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral tuning of photoproteins by partnering site-directed mutagenesis strategies with the incorporation of chromophore analogs.
    Rowe L; Rothert A; Logue C; Ensor CM; Deo SK; Daunert S
    Protein Eng Des Sel; 2008 Feb; 21(2):73-81. PubMed ID: 18175778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescence resonance energy transfer from aequorin to a fluorophore: an artificial jellyfish for applications in multianalyte detection.
    Deo SK; Mirasoli M; Daunert S
    Anal Bioanal Chem; 2005 Apr; 381(7):1387-94. PubMed ID: 15731912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aequorin variants with improved bioluminescence properties.
    Dikici E; Qu X; Rowe L; Millner L; Logue C; Deo SK; Ensor M; Daunert S
    Protein Eng Des Sel; 2009 Apr; 22(4):243-8. PubMed ID: 19168563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer.
    Gorokhovatsky AY; Marchenkov VV; Rudenko NV; Ivashina TV; Ksenzenko VN; Burkhardt N; Semisotnov GV; Vinokurov LM; Alakhov YB
    Biochem Biophys Res Commun; 2004 Jul; 320(3):703-11. PubMed ID: 15240105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescent immunoassay using a fusion protein of protein A and the photoprotein aequorin.
    Zenno S; Inouye S
    Biochem Biophys Res Commun; 1990 Aug; 171(1):169-74. PubMed ID: 2203343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a liposomal bioluminescent label in the development of a flow injection immunoanalytical system.
    Ho JA; Huang MR
    Anal Chem; 2005 Jun; 77(11):3431-6. PubMed ID: 15924372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein.
    Stepanyuk GA; Golz S; Markova SV; Frank LA; Lee J; Vysotski ES
    FEBS Lett; 2005 Feb; 579(5):1008-14. PubMed ID: 15710383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study.
    Natashin PV; Burakova LP; Kovaleva MI; Shevtsov MB; Dmitrieva DA; Eremeeva EV; Markova SV; Mishin AV; Borshchevskiy VI; Vysotski ES
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of histidine-tagged aequorin with a reactive cysteine residue for chemical conjugations and its application for bioluminescent sandwich immunoassays.
    Inouye S; Sato J
    Protein Expr Purif; 2012 Jun; 83(2):205-10. PubMed ID: 22538315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intrinsic fluorescence of apo-obelin and apo-aequorin and use of its quenching to characterize coelenterazine binding.
    Eremeeva EV; Markova SV; Westphal AH; Visser AJ; van Berkel WJ; Vysotski ES
    FEBS Lett; 2009 Jun; 583(12):1939-44. PubMed ID: 19426732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine-free mutant of aequorin as a photolabel in immunoassay development.
    Shrestha S; Paeng IR; Deo SK; Daunert S
    Bioconjug Chem; 2002; 13(2):269-75. PubMed ID: 11906264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immunoassay for Leu-enkephalin based on a C-terminal aequorin-peptide fusion.
    Deo SK; Daunert S
    Anal Chem; 2001 Apr; 73(8):1903-8. PubMed ID: 11338609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Bioluminescence Function of the Ca
    Eremeeva EV; Vysotski ES
    Photochem Photobiol; 2019 Jan; 95(1):8-23. PubMed ID: 29855041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents.
    Eremeeva EV; Jiang T; Malikova NP; Li M; Vysotski ES
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aequorin mutants with increased thermostability.
    Qu X; Rowe L; Dikici E; Ensor M; Daunert S
    Anal Bioanal Chem; 2014 Sep; 406(23):5639-43. PubMed ID: 25084737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.