BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 10725111)

  • 1. Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fly ash.
    Veranth JM; Smith KR; Huggins F; Hu AA; Lighty JS; Aust AE
    Chem Res Toxicol; 2000 Mar; 13(3):161-4. PubMed ID: 10725111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle characteristics responsible for effects on human lung epithelial cells.
    Aust AE; Ball JC; Hu AA; Lighty JS; Smith KR; Straccia AM; Veranth JM; Young WC
    Res Rep Health Eff Inst; 2002 Dec; (110):1-65; discussion 67-76. PubMed ID: 12578113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability of iron from coal fly ash: mechanisms of mobilization and of biological effects.
    Ball BR; Smith KR; Veranth JM; Aust AE
    Inhal Toxicol; 2000; 12 Suppl 4():209-25. PubMed ID: 12881893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.
    Smith KR; Veranth JM; Lighty JS; Aust AE
    Chem Res Toxicol; 1998 Dec; 11(12):1494-500. PubMed ID: 9860493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash.
    Chen H; Grassian VH; Saraf LV; Laskin A
    Analyst; 2013 Jan; 138(2):451-60. PubMed ID: 23207643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron, as a function of particle size and source of coal.
    Smith KR; Veranth JM; Hu AA; Lighty JS; Aust AE
    Chem Res Toxicol; 2000 Feb; 13(2):118-25. PubMed ID: 10688536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity.
    Prahalad AK; Inmon J; Dailey LA; Madden MC; Ghio AJ; Gallagher JE
    Chem Res Toxicol; 2001 Jul; 14(7):879-87. PubMed ID: 11453735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization of iron from coal fly ash was dependent upon the particle size and source of coal: analysis of rates and mechanisms.
    Veranth JM; Smith KR; Hu AA; Lighty JS; Aust AE
    Chem Res Toxicol; 2000 May; 13(5):382-9. PubMed ID: 10813655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.
    Kristovich RL; Dutta PK
    Environ Sci Technol; 2005 Sep; 39(18):6971-7. PubMed ID: 16201618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The geochemistry and bioreactivity of fly-ash from coal-burning power stations.
    Jones T; Wlodarczyk A; Koshy L; Brown P; Shao L; BéruBé K
    Biomarkers; 2009 Jul; 14 Suppl 1():45-8. PubMed ID: 19604058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells.
    Diabaté S; Bergfeldt B; Plaumann D; Ubel C; Weiss C
    Anal Bioanal Chem; 2011 Dec; 401(10):3197-212. PubMed ID: 21626191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in bulk and microscale yttrium speciation in coal combustion fly ash.
    Taggart RK; Rivera NA; Levard C; Ambrosi JP; Borschneck D; Hower JC; Hsu-Kim H
    Environ Sci Process Impacts; 2018 Oct; 20(10):1390-1403. PubMed ID: 30264835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coal fly ash as a source of iron in atmospheric dust.
    Chen H; Laskin A; Baltrusaitis J; Gorski CA; Scherer MM; Grassian VH
    Environ Sci Technol; 2012 Feb; 46(4):2112-20. PubMed ID: 22260270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubility of iron from combustion source particles in acidic media linked to iron speciation.
    Fu H; Lin J; Shang G; Dong W; Grassian VH; Carmichael GR; Li Y; Chen J
    Environ Sci Technol; 2012 Oct; 46(20):11119-27. PubMed ID: 22963384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations on fly-ash and soil samples in the environment of a coal-fired power plant.
    Glöbel B; Andres C
    Sci Total Environ; 1985 Oct; 45():63-7. PubMed ID: 4081767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of 2'-deoxyguanosine hydroxylation and DNA damage by coal and oil fly ash in relation to particulate metal content and availability.
    Prahalad AK; Inmon J; Ghio AJ; Gallagher JE
    Chem Res Toxicol; 2000 Oct; 13(10):1011-9. PubMed ID: 11080050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of individual aerosol particles on moss surfaces: implications for source apportionment.
    Weinbruch S; Ebert M; Gorzawski H; Dirsch T; Berg T; Steinnes E
    J Environ Monit; 2010 May; 12(5):1064-71. PubMed ID: 21491675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on the magnetic characteristics of coal fly ash at different combustion temperatures.
    Liu D; Wu X; Du Y; Sun L
    Environ Technol; 2018 Aug; 39(15):1967-1975. PubMed ID: 28661224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and biological studies of coal and oil fly ash.
    Fisher GL; McNeill KL; Prentice BA; McFarland AR
    Environ Health Perspect; 1983 Sep; 51():181-8. PubMed ID: 6641653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells.
    van Maanen JM; Borm PJ; Knaapen A; van Herwijnen M; Schilderman PA; Smith KR; Aust AE; Tomatis M; Fubini B
    Inhal Toxicol; 1999 Dec; 11(12):1123-41. PubMed ID: 10562700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.