These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10725127)

  • 1. Formation of sugar-specific reactive intermediates from (13)C-labeled L-serines.
    Yaylayan VA; Keyhani A; Wnorowski A
    J Agric Food Chem; 2000 Mar; 48(3):636-41. PubMed ID: 10725127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrazine formation from serine and threonine.
    Shu CK
    J Agric Food Chem; 1999 Oct; 47(10):4332-5. PubMed ID: 10552811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of carbohydrate degradation products in L-Alanine/D-[(13)C]glucose model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 2000 Jun; 48(6):2415-9. PubMed ID: 10888560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and mechanistic pathways of formation of the parent furan--a food toxicant.
    Perez Locas C; Yaylayan VA
    J Agric Food Chem; 2004 Nov; 52(22):6830-6. PubMed ID: 15506823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate and amino acid degradation pathways in L-methionine/D-[13C] glucose model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 2001 Feb; 49(2):800-3. PubMed ID: 11262032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of 2,3-pentanedione and 2,3-butanedione in D-glucose/L-alanine Maillard model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 1999 Aug; 47(8):3280-4. PubMed ID: 10552645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope labeling studies on the origin of 3,4-hexanedione and 1,2-butanedione in an alanine/glucose model system.
    Chu FL; Yaylayan VA
    J Agric Food Chem; 2009 Oct; 57(20):9740-6. PubMed ID: 19778056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal generation of 3-amino-4,5-dimethylfuran-2(5H)-one, the postulated precursor of sotolone, from amino acid model systems containing glyoxylic and pyruvic acids.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2011 May; 59(9):4699-704. PubMed ID: 21417407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the solvent glycerol in the Maillard reaction of d-fructose and l-alanine.
    Cerny C; Guntz-Dubini R
    J Agric Food Chem; 2006 Jan; 54(2):574-7. PubMed ID: 16417323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and the fate of C2, C3, and C4 reactive fragments formed in Maillard model systems of [13C]glucose and [13C]glycine or proline.
    Yaylayan VA; Keyhani A; Huygues-Despointes A
    Adv Exp Med Biol; 1998; 434():237-44. PubMed ID: 9598203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Schiff base adducts of 2,3-butanedione with glycine: formation of pyrazine rings with the participation of amino acid carbon atoms.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2012 Nov; 60(45):11440-5. PubMed ID: 23106172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Mass Spectrometry Analysis of Melanoidins and Their Precursors Formed in a Model Study of the Maillard Reaction of Methylglyoxal with l-Alanine or l-Lysine.
    Kanzler C; Wustrack F; Rohn S
    J Agric Food Chem; 2021 Oct; 69(40):11960-11970. PubMed ID: 34591478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of formation of redox-active hydroxylated benzenes and pyrazine in 13C-labeled glycine/D-glucose model systems.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2005 Dec; 53(25):9742-6. PubMed ID: 16332124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2000 Aug; 48(8):3549-54. PubMed ID: 10956148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal.
    Adams A; Polizzi V; van Boekel M; De Kimpe N
    J Agric Food Chem; 2008 Mar; 56(6):2147-53. PubMed ID: 18318495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Complex Maillard Chemical Reactions, Resolved in Time.
    Hemmler D; Roullier-Gall C; Marshall JW; Rychlik M; Taylor AJ; Schmitt-Kopplin P
    Sci Rep; 2017 Jun; 7(1):3227. PubMed ID: 28607428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model studies on the formation of 2-vinylpyrazine and 2-vinyl-6-methylpyrazine in Maillard-type reactions.
    Ma YJ; Wang XY; Zhu BW; Du M; Dong L; Dong XP; Xu XB
    Food Chem; 2022 Apr; 374():131652. PubMed ID: 34883429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.