These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10725155)

  • 1. Activity of antifungal proteins against mold in sorghum caryopses in the field.
    Bueso FJ; Waniska RD; Rooney WL; Bejosano FP
    J Agric Food Chem; 2000 Mar; 48(3):810-6. PubMed ID: 10725155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal proteins and grain mold resistance in sorghum with nonpigmented testa.
    Rodríguez-Herrera R; Waniska RD; Rooney WL
    J Agric Food Chem; 1999 Nov; 47(11):4802-6. PubMed ID: 10552893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of chitinase and sormatin accumulation in the resistance of sorghum cultivars to grain mold.
    Prom LK; Waniska RD; Kollo AI; Rooney WL; Bejosano FP
    J Agric Food Chem; 2005 Jul; 53(14):5565-70. PubMed ID: 15998115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold.
    Waniska RD; Venkatesha RT; Chandrashekar A; Krishnaveni S; Bejosano FP; Jeoung J; Jayaraj J; Muthukrishnan S; Liang GH
    J Agric Food Chem; 2001 Oct; 49(10):4732-42. PubMed ID: 11600015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal proteins in commercial hybrids and elite sorghums.
    Bejosano FP; Waniska RD; Rooney WL
    J Agric Food Chem; 2003 Sep; 51(20):5911-5. PubMed ID: 13129294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata.
    Katilé SO; Perumal R; Rooney WL; Prom LK; Magill CW
    Mol Plant Pathol; 2010 Jan; 11(1):93-103. PubMed ID: 20078779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal Effect and Protective Role of Ursolic Acid and Three Phenolic Derivatives in the Management of Sorghum Grain Mold Under Field Conditions.
    Shaik AB; Ahil SB; Govardhanam R; Senthi M; Khan R; Sojitra R; Kumar S; Srinivas A
    Chem Biodivers; 2016 Sep; 13(9):1158-1164. PubMed ID: 27447843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Wetness Duration and Grain Development Stages on Sorghum Grain Mold Infection.
    Navi SS; Bandyopadhyay R; Reddy RK; Thakur RP; Yang XB
    Plant Dis; 2005 Aug; 89(8):872-878. PubMed ID: 30786520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of early stages of sorghum grain mold disease reveals defense regulators and metabolic pathways associated with resistance.
    Nida H; Lee S; Li Y; Mengiste T
    BMC Genomics; 2021 Apr; 22(1):295. PubMed ID: 33888060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ergosterol concentration and variability in genotype-by-pathogen interaction for grain mold resistance in sorghum.
    Mpofu LT; McLaren NW
    Planta; 2014 Aug; 240(2):239-50. PubMed ID: 24817586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects for reducing fumonisin contamination of maize through genetic modification.
    Duvick J
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on sorghum grain mold fungi.
    Sajeli Begum A; Basha SA; Raghavendra G; Kumar MV; Singh Y; Patil JV; Tanemura Y; Fujimoto Y
    Chem Biodivers; 2014 Jan; 11(1):92-100. PubMed ID: 24443429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli.
    Kirubakaran SI; Sakthivel N
    Protein Expr Purif; 2007 Mar; 52(1):159-66. PubMed ID: 17029984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the tripartite interaction of volatile compounds of
    Sudha A; Durgadevi D; Archana S; Muthukumar A; Suthin Raj T; Nakkeeran S; Poczai P; Nasif O; Ansari MJ; Sayyed RZ
    Front Microbiol; 2022; 13():923360. PubMed ID: 35966704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Plant Color and Pericarp Color with Colonization of Grain by Members of Fusarium and Alternaria in Near-Isogenic Sorghum Lines.
    Funnell DL; Pedersen JF
    Plant Dis; 2006 Apr; 90(4):411-418. PubMed ID: 30786586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens.
    Vila L; Lacadena V; Fontanet P; Martinez del Pozo A; San Segundo B
    Mol Plant Microbe Interact; 2001 Nov; 14(11):1327-31. PubMed ID: 11763131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance to Grain Mold and Downy Mildew in a Mini-Core Collection of Sorghum Germplasm.
    Sharma R; Rao VP; Upadhyaya HD; Reddy VG; Thakur RP
    Plant Dis; 2010 Apr; 94(4):439-444. PubMed ID: 30754520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and zearalenone in wheat.
    Kharbikar LL; Dickin ET; Edwards SG
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):2075-85. PubMed ID: 26361223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of proteins from low-tannin sorghum grain.
    Taylor JR; Schüssler L; van der Walt WH
    J Agric Food Chem; 1984; 32(1):149-54. PubMed ID: 6707328
    [No Abstract]   [Full Text] [Related]  

  • 20. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen.
    Fuerst EP; James MS; Pollard AT; Okubara PA
    Front Plant Sci; 2017; 8():2259. PubMed ID: 29410673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.