These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 10725187)
1. A principal components-based method for the detection of neuronal activity maps: application to optical imaging. Gabbay M; Brennan C; Kaplan E; Sirovich L Neuroimage; 2000 Apr; 11(4):313-25. PubMed ID: 10725187 [TBL] [Abstract][Full Text] [Related]
2. Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation. Rijpkema M; van Aalderen SI; Schwarzbach JV; Verstraten FA Brain Res; 2008 Jan; 1189():90-6. PubMed ID: 18062939 [TBL] [Abstract][Full Text] [Related]
3. The multiscale character of evoked cortical activity. Breakspear M; Bullmore ET; Aquino K; Das P; Williams LM Neuroimage; 2006 May; 30(4):1230-42. PubMed ID: 16403656 [TBL] [Abstract][Full Text] [Related]
4. Influence of experience on orientation maps in cat visual cortex. Sengpiel F; Stawinski P; Bonhoeffer T Nat Neurosci; 1999 Aug; 2(8):727-32. PubMed ID: 10412062 [TBL] [Abstract][Full Text] [Related]
5. Functional cell classes and functional architecture in the early visual system of a highly visual rodent. Van Hooser SD; Heimel JA; Nelson SB Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581 [TBL] [Abstract][Full Text] [Related]
6. Independent component analysis of fMRI group studies by self-organizing clustering. Esposito F; Scarabino T; Hyvarinen A; Himberg J; Formisano E; Comani S; Tedeschi G; Goebel R; Seifritz E; Di Salle F Neuroimage; 2005 Mar; 25(1):193-205. PubMed ID: 15734355 [TBL] [Abstract][Full Text] [Related]
7. Contrast independence of cardinal preference: stable oblique effect in orientation maps of ferret visual cortex. Grabska-Barwińska A; Distler C; Hoffmann KP; Jancke D Eur J Neurosci; 2009 Mar; 29(6):1258-70. PubMed ID: 19302161 [TBL] [Abstract][Full Text] [Related]
8. Short-term reorganization of the cortical network? Some questions from visual psychophysics. MacKay DM Acta Morphol Hung; 1983; 31(1-3):285-99. PubMed ID: 6414261 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous pattern formation and pinning in the primary visual cortex. Baker TI; Cowan JD J Physiol Paris; 2009; 103(1-2):52-68. PubMed ID: 19523514 [TBL] [Abstract][Full Text] [Related]
10. Correspondence of visual evoked potentials with FMRI signals in human visual cortex. Whittingstall K; Wilson D; Schmidt M; Stroink G Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455 [TBL] [Abstract][Full Text] [Related]
11. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Nir Y; Hasson U; Levy I; Yeshurun Y; Malach R Neuroimage; 2006 May; 30(4):1313-24. PubMed ID: 16413791 [TBL] [Abstract][Full Text] [Related]
12. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex. Nakagama H; Tani T; Tanaka S Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978 [TBL] [Abstract][Full Text] [Related]
13. Super resolution: another computational role of short-range horizontal connection in the primary visual cortex. Sasaki H; Satoh S Neural Netw; 2009 May; 22(4):362-72. PubMed ID: 19150217 [TBL] [Abstract][Full Text] [Related]
14. Lagged covariance structure models for studying functional connectivity in the brain. Rykhlevskaia E; Fabiani M; Gratton G Neuroimage; 2006 May; 30(4):1203-18. PubMed ID: 16414282 [TBL] [Abstract][Full Text] [Related]
15. Hypothetical neural mechanism that may play a role in mental rotation: an attractor neural network model. Benusková L; Estok S Network; 1998 Nov; 9(4):513-30. PubMed ID: 10221577 [TBL] [Abstract][Full Text] [Related]
16. Imprinting modulates processing of visual information in the visual wulst of chicks. Maekawa F; Komine O; Sato K; Kanamatsu T; Uchimura M; Tanaka K; Ohki-Hamazaki H BMC Neurosci; 2006 Nov; 7():75. PubMed ID: 17101060 [TBL] [Abstract][Full Text] [Related]
17. Retinotopic distribution of chromatic responses in human primary visual cortex. Vanni S; Henriksson L; Viikari M; James AC Eur J Neurosci; 2006 Sep; 24(6):1821-31. PubMed ID: 17004945 [TBL] [Abstract][Full Text] [Related]
18. Estimating linear cortical magnification in human primary visual cortex via dynamic programming. Qiu A; Rosenau BJ; Greenberg AS; Hurdal MK; Barta P; Yantis S; Miller MI Neuroimage; 2006 May; 31(1):125-38. PubMed ID: 16469509 [TBL] [Abstract][Full Text] [Related]
19. Model-based analysis of excitatory lateral connections in the visual cortex. Buzás P; Kovács K; Ferecskó AS; Budd JM; Eysel UT; Kisvárday ZF J Comp Neurol; 2006 Dec; 499(6):861-81. PubMed ID: 17072837 [TBL] [Abstract][Full Text] [Related]
20. How do functional maps in primary visual cortex vary with eccentricity? Xu X; Anderson TJ; Casagrande VA J Comp Neurol; 2007 Apr; 501(5):741-55. PubMed ID: 17299757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]