These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10725302)

  • 21. In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1.
    Ross MK; Pegram RA
    Toxicol Appl Pharmacol; 2004 Mar; 195(2):166-81. PubMed ID: 14998683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism and cytotoxicity of naphthalene and its metabolites in isolated murine Clara cells.
    Chichester CH; Buckpitt AR; Chang A; Plopper CG
    Mol Pharmacol; 1994 Apr; 45(4):664-72. PubMed ID: 8183245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative ion tandem mass spectrometry for the detection of glutathione conjugates.
    Dieckhaus CM; Fernández-Metzler CL; King R; Krolikowski PH; Baillie TA
    Chem Res Toxicol; 2005 Apr; 18(4):630-8. PubMed ID: 15833023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the metabolism of the novel, selective cyclooxygenase-2 inhibitor indomethacin phenethylamide in rat, mouse, and human liver microsomes: identification of active metabolites.
    Remmel RP; Crews BC; Kozak KR; Kalgutkar AS; Marnett LJ
    Drug Metab Dispos; 2004 Jan; 32(1):113-22. PubMed ID: 14709628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: an endpoint/toxic response where data from multiple chemicals converge to support a mode of action.
    Cruzan G; Bus J; Banton M; Gingell R; Carlson G
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):205-18. PubMed ID: 19589367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the in vitro metabolism profile of a phosphodiesterase-IV inhibitor, CDP-840: leading to structural optimization.
    Li C; Chauret N; Trimble LA; Nicoll-Griffith DA; Silva JM; MacDonald D; Perrier H; Yergey JA; Parton T; Alexander RP; Warrellow GJ
    Drug Metab Dispos; 2001 Mar; 29(3):232-41. PubMed ID: 11181489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential formation of 1,1-dichloroethylene-metabolites in the lungs of adult and weanling male and female mice: correlation with severities of bronchiolar cytotoxicity.
    Forkert PG; Dowsley TF; Lee RP; Hong JY; Ulreich JB
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1484-90. PubMed ID: 8968374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism of [14C]naphthalene in the B6C3F1 murine isolated perfused liver.
    Tsuruda LS; Lamé MW; Jones AD
    Drug Metab Dispos; 1995 Jan; 23(1):129-36. PubMed ID: 7720516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioactivation of 2,3-diaminopyridine-containing bradykinin B1 receptor antagonists: irreversible binding to liver microsomal proteins and formation of glutathione conjugates.
    Tang C; Subramanian R; Kuo Y; Krymgold S; Lu P; Kuduk SD; Ng C; Feng DM; Elmore C; Soli E; Ho J; Bock MG; Baillie TA; Prueksaritanont T
    Chem Res Toxicol; 2005 Jun; 18(6):934-45. PubMed ID: 15962928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes.
    Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK
    Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioactivation of the pulmonary toxicants naphthalene and 1-nitronaphthalene by rat CYP2F4.
    Baldwin RM; Shultz MA; Buckpitt AR
    J Pharmacol Exp Ther; 2005 Feb; 312(2):857-65. PubMed ID: 15509722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a structurally intact in situ lung model and comparison of naphthalene protein adducts generated in this model vs lung microsomes.
    Lin CY; Isbell MA; Morin D; Boland BC; Salemi MR; Jewell WT; Weir AJ; Fanucchi MV; Baker GL; Plopper CG; Buckpitt AR
    Chem Res Toxicol; 2005 May; 18(5):802-13. PubMed ID: 15892573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro metabolism of the COX-2 inhibitor DFU, including a novel glutathione adduct rearomatization.
    Yergey JA; Trimble LA; Silva J; Chauret N; Li C; Therien M; Grimm E; Nicoll-Griffith DA
    Drug Metab Dispos; 2001 May; 29(5):638-44. PubMed ID: 11302928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Species and tissue differences in the microsomal oxidation of 1,3-butadiene and the glutathione conjugation of butadiene monoxide in mice and rats. Possible role in 1,3-butadiene-induced toxicity.
    Sharer JE; Duescher RJ; Elfarra AA
    Drug Metab Dispos; 1992; 20(5):658-64. PubMed ID: 1358569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent interactions of reactive naphthalene metabolites with proteins.
    Cho M; Chichester C; Morin D; Plopper C; Buckpitt A
    J Pharmacol Exp Ther; 1994 May; 269(2):881-9. PubMed ID: 8182557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans.
    Lang D; Freudenberger C; Weinz C
    Drug Metab Dispos; 2009 May; 37(5):1046-55. PubMed ID: 19196846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro metabolic activation of thiabendazole via 5-hydroxythiabendazole: identification of a glutathione conjugate of 5-hydroxythiabendazole.
    Dalvie D; Smith E; Deese A; Bowlin S
    Drug Metab Dispos; 2006 Apr; 34(4):709-17. PubMed ID: 16434547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic activation of troglitazone: identification of a reactive metabolite and mechanisms involved.
    He K; Talaat RE; Pool WF; Reily MD; Reed JE; Bridges AJ; Woolf TF
    Drug Metab Dispos; 2004 Jun; 32(6):639-46. PubMed ID: 15155556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the effect of oxygen exposure on human liver microsomal metabolism of mitomycin C in the presence of glutathione using liquid chromatography-quadrupole time of flight mass spectrometry.
    Lang W; Caldwell GW; Masucci JA
    Anal Biochem; 2005 Aug; 343(2):268-76. PubMed ID: 16005424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of the A(1)1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans.
    Bier D; Holschbach MH; Wutz W; Olsson RA; Coenen HH
    Drug Metab Dispos; 2006 Apr; 34(4):570-6. PubMed ID: 16415116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.