These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10725379)

  • 41. An assessment of the accuracy of methods for predicting hydrogen positions in protein structures.
    Forrest LR; Honig B
    Proteins; 2005 Nov; 61(2):296-309. PubMed ID: 16114036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular mechanisms of acid denaturation. The role of histidine residues in the partial unfolding of apomyoglobin.
    Barrick D; Hughson FM; Baldwin RL
    J Mol Biol; 1994 Apr; 237(5):588-601. PubMed ID: 8158639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neutron protein crystallography: beyond the folding structure of biological macromolecules.
    Niimura N; Bau R
    Acta Crystallogr A; 2008 Jan; 64(Pt 1):12-22. PubMed ID: 18156668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydroxyl and water molecule orientations in trypsin: comparison to molecular dynamic structures.
    McDowell RS; Kossiakoff AA
    Basic Life Sci; 1996; 64():273-87. PubMed ID: 9092457
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The main role of inner histidines in the molecular mechanism of myoglobin oxidation catalyzed by copper compounds.
    Postnikova GB; Moiseeva SA; Shekhovtsova EA
    Inorg Chem; 2010 Feb; 49(4):1347-54. PubMed ID: 20088488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG
    Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct determination of protonation states of histidine residues in a 2 A neutron structure of deoxy-human normal adult hemoglobin and implications for the Bohr effect.
    Kovalevsky AY; Chatake T; Shibayama N; Park SY; Ishikawa T; Mustyakimov M; Fisher Z; Langan P; Morimoto Y
    J Mol Biol; 2010 Apr; 398(2):276-91. PubMed ID: 20230836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neutron Laue macromolecular crystallography.
    Meilleur F; Myles DA; Blakeley MP
    Eur Biophys J; 2006 Sep; 35(7):611-20. PubMed ID: 16897039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin.
    Johnson RS; Walsh KA
    Protein Sci; 1994 Dec; 3(12):2411-8. PubMed ID: 7756994
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protonation State and Hydration of Bisphosphonate Bound to Farnesyl Pyrophosphate Synthase.
    Yokoyama T; Mizuguchi M; Ostermann A; Kusaka K; Niimura N; Schrader TE; Tanaka I
    J Med Chem; 2015 Sep; 58(18):7549-56. PubMed ID: 26314394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Effective Deuterium Exchange Method for Neutron Crystal Structure Analysis with Unfolding-Refolding Processes.
    Kita A; Morimoto Y
    Mol Biotechnol; 2016 Feb; 58(2):130-6. PubMed ID: 26718545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The application of neutron crystallography to the study of dynamic and and hydration properties of proteins.
    Kossiakoff AA
    Annu Rev Biochem; 1985; 54():1195-227. PubMed ID: 3896118
    [No Abstract]   [Full Text] [Related]  

  • 55. A high-angle neutron fibre diffraction study of the hydration of deuterated A-DNA.
    Shotton MW; Pope LH; Forsyth T; Langan P; Denny RC; Giesen U; Dauvergne MT; Fuller W
    Biophys Chem; 1997 Nov; 69(1):85-96. PubMed ID: 9440211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neutron spectroscopy of hydrogenous and biosynthetically deuterated proteins.
    Middendorf HD; Randall JT; Crespi HL
    Basic Life Sci; 1984; 27():381-400. PubMed ID: 6712572
    [No Abstract]   [Full Text] [Related]  

  • 57. High resolution neutron fibre diffraction data on hydrogenated and deuterated cellulose.
    Nishiyama Y; Okano T; Langan P; Chanzy H
    Int J Biol Macromol; 1999 Dec; 26(4):279-83. PubMed ID: 10569290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A neutron crystallographic analysis of T6 porcine insulin at 2.1 A resolution.
    Iwai W; Yamada T; Kurihara K; Ohnishi Y; Kobayashi Y; Tanaka I; Takahashi H; Kuroki R; Tamada T; Niimura N
    Acta Crystallogr D Biol Crystallogr; 2009 Oct; 65(Pt 10):1042-50. PubMed ID: 19770501
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of the neutron diffraction--H/D exchange technique to determine the conformational dynamics of trypsin.
    Kossiakoff AA
    Basic Life Sci; 1984; 27():281-304. PubMed ID: 6712567
    [No Abstract]   [Full Text] [Related]  

  • 60. Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin.
    Phillips SE; Schoenborn BP
    Nature; 1981 Jul; 292(5818):81-2. PubMed ID: 7278969
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.