These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10725539)

  • 1. A fluorescence based non-radioactive electrophoretic mobility shift assay.
    Ruscher K; Reuter M; Kupper D; Trendelenburg G; Dirnagl U; Meisel A
    J Biotechnol; 2000 Mar; 78(2):163-70. PubMed ID: 10725539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid qualitative evaluation of DNA transcription factor NF-κB by microchip electrophoretic mobility shift assay in mammalian cells.
    Inoue S; Kaji N; Kataoka M; Shinohara Y; Okamoto Y; Tokeshi M; Baba Y
    Electrophoresis; 2011 Nov; 32(22):3241-7. PubMed ID: 22102498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a sensitive multi-well colorimetric assay for active NFkappaB.
    Renard P; Ernest I; Houbion A; Art M; Le Calvez H; Raes M; Remacle J
    Nucleic Acids Res; 2001 Feb; 29(4):E21. PubMed ID: 11160941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides.
    Hsieh YW; Alqadah A; Chuang CF
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27929467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic mobility shift assay analysis of NF-κB DNA binding.
    Ramaswami S; Hayden MS
    Methods Mol Biol; 2015; 1280():3-13. PubMed ID: 25736740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer-based method for detection of DNA binding activities of nuclear factor kappaB.
    He HJ; Pires R; Zhu TN; Zhou A; Gaigalas AK; Zou S; Wang L
    Biotechniques; 2007 Jul; 43(1):93-8. PubMed ID: 17695258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LUEGO: a cost and time saving gel shift procedure.
    Jullien N; Herman JP
    Biotechniques; 2011 Oct; 51(4):267-9. PubMed ID: 21988693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site.
    Karpova EA; Kubareva EA; Shabarova ZA
    IUBMB Life; 1999 Jul; 48(1):91-8. PubMed ID: 10791921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-based electrophoretic mobility shift assay in the analysis of DNA-binding proteins.
    Steiner S; Pfannschmidt T
    Methods Mol Biol; 2009; 479():273-89. PubMed ID: 19083181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.
    Yousaf N; Gould D
    Methods Mol Biol; 2017; 1651():11-21. PubMed ID: 28801896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peculiarities of the binding of restriction endonuclease EcoRII to synthetic DNA duplexes.
    Karpova EA; Kubareva EA; Gromova ES; Buryanov YI
    Biochem Mol Biol Int; 1993 Jan; 29(1):113-21. PubMed ID: 8490558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles and problems of the electrophoretic mobility shift assay.
    Holden NS; Tacon CE
    J Pharmacol Toxicol Methods; 2011; 63(1):7-14. PubMed ID: 20348003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels.
    Jing D; Agnew J; Patton WF; Hendrickson J; Beechem JM
    Proteomics; 2003 Jul; 3(7):1172-80. PubMed ID: 12872218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic mobility shift assay for the detection of specific DNA-protein complex in nuclear extracts from the cultured cells and frozen autopsy human brain tissue.
    Lahiri DK; Ge Y
    Brain Res Brain Res Protoc; 2000 Jul; 5(3):257-65. PubMed ID: 10906491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interaction of EcoRII restriction and modification enzymes with synthetic DNA fragments. Determination of the size of EcoRII binding site].
    Vinogradova MV; Gromova ES; Kosykh VG; Bur'ianov IaI; Shabarova ZA
    Mol Biol (Mosk); 1990; 24(3):847-50. PubMed ID: 2402242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hairpin probes for teal-time assay of restriction endonucleases].
    Zhang YY; Li QG; Liang JX; Zhu YB
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 May; 34(3):329-32. PubMed ID: 12019446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TransLISA, a novel quantitative, nonradioactive assay for transcription factor DNA-binding analyses.
    Vuori KA; Ahlskog JK; Sistonen L; Nikinmaa M
    FEBS J; 2009 Dec; 276(24):7366-74. PubMed ID: 19912339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hydrolysis of DNA-duplexes, containing 5-fluorodeoxycytidine by restriction endonucleases].
    Sheflian GIa; Kubareva EA; Gromova ES; Shabarova ZA
    Biokhimiia; 1993 Nov; 58(11):1806-11. PubMed ID: 8268318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A new method for EMSA by modifying DIG high prime DNA labeling and detection starter Kit II].
    Qi XT; Chai XQ; Liu J; Chai TY
    Yi Chuan; 2006 Jun; 28(6):721-5. PubMed ID: 16818437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Formation of two types of enzyme-substrate complexes during the interaction of EcoRII restriction enzyme with synthetic DNA-duplexes].
    Karpova EA; Kubareva EA; Bur'ianov IaI; Gromova ES
    Mol Biol (Mosk); 1992; 26(5):993-8. PubMed ID: 1470181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.