These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10725565)

  • 21. Eye tracking measures of uncertainty during perceptual decision making.
    Brunyé TT; Gardony AL
    Int J Psychophysiol; 2017 Oct; 120():60-68. PubMed ID: 28732659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of BOLD changes due to cued eye-closure and stopping during a continuous visuomotor task via model-based and model-free approaches.
    Poudel GR; Jones RD; Innes CR; Watts R; Davidson PR; Bones PJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):479-88. PubMed ID: 20525535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do pupil-based binocular video eye trackers reliably measure vergence?
    Hooge ITC; Hessels RS; Nyström M
    Vision Res; 2019 Mar; 156():1-9. PubMed ID: 30641092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into feature and conjunction search: I. Evidence from pupil size, eye movements and ageing.
    Porter G; Tales A; Troscianko T; Wilcock G; Haworth J; Leonards U
    Cortex; 2010 May; 46(5):621-36. PubMed ID: 19591979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection and prediction of driver drowsiness using artificial neural network models.
    Jacobé de Naurois C; Bourdin C; Stratulat A; Diaz E; Vercher JL
    Accid Anal Prev; 2019 May; 126():95-104. PubMed ID: 29203032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of Changes in Surgical Difficulty: Evidence From Pupil Responses.
    Zheng B; Jiang X; Atkins MS
    Surg Innov; 2015 Dec; 22(6):629-35. PubMed ID: 25759398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction.
    Innes CR; Poudel GR; Jones RD
    Chronobiol Int; 2013 Nov; 30(9):1187-96. PubMed ID: 23998288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Verification of Objective Visual Fatigue Measurement Based on Accurate Pupil Detection of Infrared Eye Image and Multi-Feature Analysis.
    Kim T; Lee EC
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A data-driven algorithm for offline pupil signal preprocessing and eyeblink detection in low-speed eye-tracking protocols.
    Pedrotti M; Lei S; Dzaack J; Rötting M
    Behav Res Methods; 2011 Jun; 43(2):372-83. PubMed ID: 21302023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of drivers.
    Čegovnik T; Stojmenova K; Jakus G; Sodnik J
    Appl Ergon; 2018 Apr; 68():1-11. PubMed ID: 29409621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights From Pupil Size to Mental Workload of Surgical Residents: Feasibility of an Educational Computer-Based Surgical Simulation Environment (ECE) Considering the Hand Condition.
    Menekse Dalveren GG; Cagiltay NE; Ozcelik E; Maras H
    Surg Innov; 2018 Dec; 25(6):616-624. PubMed ID: 30205777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Common EEG features for behavioral estimation in disparate, real-world tasks.
    Touryan J; Lance BJ; Kerick SE; Ries AJ; McDowell K
    Biol Psychol; 2016 Feb; 114():93-107. PubMed ID: 26748290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Recurrent Neural Network for Attenuating Non-cognitive Components of Pupil Dynamics.
    Koorathota S; Thakoor K; Hong L; Mao Y; Adelman P; Sajda P
    Front Psychol; 2021; 12():604522. PubMed ID: 33597908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pupil size influences the eye-tracker signal during saccades.
    Nyström M; Hooge I; Andersson R
    Vision Res; 2016 Apr; 121():95-103. PubMed ID: 26940030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clutter in electronic medical records: examining its performance and attentional costs using eye tracking.
    Moacdieh N; Sarter N
    Hum Factors; 2015 Jun; 57(4):591-606. PubMed ID: 25850110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Eye Tracker in Lie Detection.
    Ge FF; Yang XQ; Chen YX; Huang HL; Shen XC; Li Y; Hu JM
    Fa Yi Xue Za Zhi; 2020 Apr; 36(2):229-232. PubMed ID: 32530172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of reduced visual acuity on precision of two-dimensional tracing movements.
    Domkin D; Richter HO; Zetterlund C; Lundqvist LO
    J Optom; 2016; 9(2):93-101. PubMed ID: 26002409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age- and fatigue-related markers of human faces: an eye-tracking study.
    Nguyen HT; Isaacowitz DM; Rubin PA
    Ophthalmology; 2009 Feb; 116(2):355-60. PubMed ID: 19084276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated eye tracking system calibration using artificial neural networks.
    Coughlin MJ; Cutmore TR; Hine TJ
    Comput Methods Programs Biomed; 2004 Dec; 76(3):207-20. PubMed ID: 15501507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Balanced Reach: A Temporal and Spectral Analysis Across Increasing Performance Demands.
    Barton JE; Graci V; Hafer-Macko C; Sorkin JD; F Macko R
    J Biomech Eng; 2016 Dec; 138(12):1210091-12100913. PubMed ID: 27551977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.