BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10727219)

  • 1. Diethyl pyrocarbonate modification abolishes fast electron accepting ability of cytochrome b561 from ascorbate but does not influence electron donation to monodehydroascorbate radical: identification of the modification sites by mass spectrometric analysis.
    Tsubaki M; Kobayashi K; Ichise T; Takeuchi F; Tagawa S
    Biochemistry; 2000 Mar; 39(12):3276-84. PubMed ID: 10727219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate inhibits the carbethoxylation of two histidyl and one tyrosyl residues indispensable for the transmembrane electron transfer reaction of cytochrome b561.
    Takeuchi F; Kobayashi K; Tagawa S; Tsubaki M
    Biochemistry; 2001 Apr; 40(13):4067-76. PubMed ID: 11300787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical.
    Recuenco MC; Rahman MM; Takeuchi F; Kobayashi K; Tsubaki M
    Biochemistry; 2013 May; 52(21):3660-8. PubMed ID: 23641721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of two heme centers for transmembrane electron transfer in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by pulse radiolysis.
    Kobayashi K; Tsubaki M; Tagawa S
    J Biol Chem; 1998 Jun; 273(26):16038-42. PubMed ID: 9632654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stopped-flow analyses on the reaction of ascorbate with cytochrome b561 purified from bovine chromaffin vesicle membranes.
    Takigami T; Takeuchi F; Nakagawa M; Hase T; Tsubaki M
    Biochemistry; 2003 Jul; 42(27):8110-8. PubMed ID: 12846560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic haem b centre of cytochrome b561: a unique machinery for the biological transmembrane electron transfer.
    Nakanishi N; Takeuchi F; Tsubaki M
    J Biochem; 2007 Nov; 142(5):553-60. PubMed ID: 17905810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of electron acceptance from ascorbate by the specific N-carbethoxylations of maize cytochrome b561: a common mechanism for the transmembrane electron transfer in cytochrome b561 protein family.
    Nakanishi N; Rahman MM; Sakamoto Y; Miura M; Takeuchi F; Park SY; Tsubaki M
    J Biochem; 2009 Dec; 146(6):857-66. PubMed ID: 19762344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversely-oriented cytochrome b561 in reconstituted vesicles catalyzes transmembrane electron transfer and supports extravesicular dopamine beta-hydroxylase activity.
    Seike Y; Takeuchi F; Tsubaki M
    J Biochem; 2003 Dec; 134(6):859-67. PubMed ID: 14769875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of an ascorbate-dependent cytochrome b of the tonoplast membrane sharing biochemical features with members of the cytochrome b561 family.
    Preger V; Scagliarini S; Pupillo P; Trost P
    Planta; 2005 Jan; 220(3):365-75. PubMed ID: 15365836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective perturbation of the intravesicular heme center of cytochrome b561 by cysteinyl modification with 4,4'-dithiodipyridine.
    Takeuchi F; Hori H; Tsubaki M
    J Biochem; 2005 Dec; 138(6):751-62. PubMed ID: 16428304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of two distinct heme centers of cytochrome b561 from bovine chromaffin vesicles studied by EPR, resonance Raman, and ascorbate reduction assay.
    Takeuchi F; Hori H; Obayashi E; Shiro Y; Tsubaki M
    J Biochem; 2004 Jan; 135(1):53-64. PubMed ID: 14999009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate of electron transfer between cytochrome b561 and extravesicular ascorbic acid.
    Kelley PM; Jalukar V; Njus D
    J Biol Chem; 1990 Nov; 265(32):19409-13. PubMed ID: 2246231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an essential histidine residue in the ascorbate-binding site of cytochrome b561.
    Kipp BH; Kelley PM; Njus D
    Biochemistry; 2001 Apr; 40(13):3931-7. PubMed ID: 11300772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the conserved lysine 83 residue of Zea mays cytochrome b(561) for ascorbate-specific transmembrane electron transfer as revealed by site-directed mutagenesis studies.
    Nakanishi N; Rahman MM; Sakamoto Y; Takigami T; Kobayashi K; Hori H; Hase T; Park SY; Tsubaki M
    Biochemistry; 2009 Nov; 48(44):10665-78. PubMed ID: 19803484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous production and characterisation of two distinct dihaem-containing membrane integral cytochrome b(561) enzymes from Arabidopsis thaliana in Pichia pastoris and Escherichia coli cells.
    Cenacchi L; Busch M; Schleidt PG; Müller FG; Stumpp TV; Mäntele W; Trost P; Lancaster CR
    Biochim Biophys Acta; 2012 Mar; 1818(3):679-88. PubMed ID: 22085541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of ascorbic acid regeneration mediated by cytochrome b561.
    Njus D; Kelley PM; Harnadek GJ; Pacquing YV
    Ann N Y Acad Sci; 1987; 493():108-19. PubMed ID: 3296905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochrome b561: analyses of cDNA nucleotide sequences and visible absorption spectra.
    Okuyama E; Yamamoto R; Ichikawa Y; Tsubaki M
    Biochim Biophys Acta; 1998 Apr; 1383(2):269-78. PubMed ID: 9602148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concerted proton-electron transfer between ascorbic acid and cytochrome b561.
    Njus D; Jalukar V; Zu JA; Kelley PM
    Am J Clin Nutr; 1991 Dec; 54(6 Suppl):1179S-1183S. PubMed ID: 1660216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts.
    Kelley PM; Njus D
    J Biol Chem; 1986 May; 261(14):6429-32. PubMed ID: 3700398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic behavior of the monodehydroascorbate radical studied by pulse radiolysis.
    Kobayashi K; Harada Y; Hayashi K
    Biochemistry; 1991 Aug; 30(34):8310-5. PubMed ID: 1883818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.