BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10727224)

  • 1. A novel glycolipid and phospholipid in the purple membrane.
    Corcelli A; Colella M; Mascolo G; Fanizzi FP; Kates M
    Biochemistry; 2000 Mar; 39(12):3318-26. PubMed ID: 10727224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and functional studies on the importance of purple membrane lipids in bacteriorhodopsin photocycle behavior.
    Dracheva S; Bose S; Hendler RW
    FEBS Lett; 1996 Mar; 382(1-2):209-12. PubMed ID: 8612754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Lipid-Bound Bacteriorhodopsin Trimer Complex Directly from Purple Membrane by Native Mass Spectrometry.
    Le J; Loo JA
    J Am Soc Mass Spectrom; 2023 Dec; 34(12):2620-2624. PubMed ID: 37975648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.
    Corcelli A; Lattanzio VM; Mascolo G; Papadia P; Fanizzi F
    J Lipid Res; 2002 Jan; 43(1):132-40. PubMed ID: 11792732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid composition of integral purple membrane by 1H and 31P NMR.
    Renner C; Kessler B; Oesterhelt D
    J Lipid Res; 2005 Aug; 46(8):1755-64. PubMed ID: 15930511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally relevant coupled dynamic profile of bacteriorhodopsin and lipids in purple membranes.
    Kamihira M; Watts A
    Biochemistry; 2006 Apr; 45(13):4304-13. PubMed ID: 16566605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glycolipid of Halobacterium trapanicum.
    Trincone A; Trivellone E; Nicolaus B; Lama L; Pagnotta E; Grant WD; Gambacorta A
    Biochim Biophys Acta; 1993 Dec; 1210(1):35-40. PubMed ID: 8257716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of glycolipids in membranes by in vivo labeling and neutron diffraction.
    Weik M; Patzelt H; Zaccai G; Oesterhelt D
    Mol Cell; 1998 Feb; 1(3):411-9. PubMed ID: 9660925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid-protein interactions in the purple membrane: structural specificity within the hydrophobic domain.
    Pomerleau V; Harvey-Girard E; Boucher F
    Biochim Biophys Acta; 1995 Mar; 1234(2):221-4. PubMed ID: 7696297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic shock induces the presence of glycocardiolipin in the purple membrane of Halobacterium salinarum.
    Lobasso S; Lopalco P; Lattanzio VM; Corcelli A
    J Lipid Res; 2003 Nov; 44(11):2120-6. PubMed ID: 12923225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel).
    Lattanzio VM; Corcelli A; Mascolo G; Oren A
    Extremophiles; 2002 Dec; 6(6):437-44. PubMed ID: 12486451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization of bacteriorhodopsin solubilized by a tripod amphiphile.
    Theisen MJ; Potocky TB; McQuade DT; Gellman SH; Chiu ML
    Biochim Biophys Acta; 2005 Aug; 1751(2):213-6. PubMed ID: 15963773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response.
    Li R; Cui X; Hu W; Lu Z; Li CM
    J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances towards resonance assignments for uniformly--13C, 15N enriched bacteriorhodopsin at 18.8 T in purple membranes.
    Varga K; Aslimovska L; Watts A
    J Biomol NMR; 2008 May; 41(1):1-4. PubMed ID: 18427930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolipid biotinylation on purple membrane with maintained bioactivity.
    Xiang Y; Yang M; Su T; Chen Y; Bi L; Hu K
    J Phys Chem B; 2009 Jun; 113(22):7762-6. PubMed ID: 19438182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content.
    Rhinow D; Hampp N
    J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes.
    Zhong YR; Yu TY; Chu LK
    Biophys J; 2022 May; 121(10):1789-1798. PubMed ID: 35440419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin.
    Joshi MK; Dracheva S; Mukhopadhyay AK; Bose S; Hendler RW
    Biochemistry; 1998 Oct; 37(41):14463-70. PubMed ID: 9772173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.