BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10727224)

  • 21. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium.
    Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW
    Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile isolation of purple membrane from Halobacterium salinarum via aqueous-two-phase system.
    Shiu PJ; Ju YH; Chen HM; Lee CK
    Protein Expr Purif; 2013 Jun; 89(2):219-24. PubMed ID: 23583309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined effect of the head groups and alkyl chains of archaea lipids when interacting with bacteriorhodopsin.
    Umegawa Y; Kawatake S; Murata M; Matsuoka S
    Biophys Chem; 2023 Mar; 294():106959. PubMed ID: 36709544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of diacylphospholipids as boundary lipids for bacteriorhodopsin from structural and functional aspects.
    Kawatake S; Umegawa Y; Matsuoka S; Murata M; Sonoyama M
    Biochim Biophys Acta; 2016 Sep; 1858(9):2106-2115. PubMed ID: 27301269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the revised structure of the major phospholipid of Halobacterium salinarium.
    Kates M; Moldoveanu N; Stewart LC
    Biochim Biophys Acta; 1993 Jul; 1169(1):46-53. PubMed ID: 8334149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane protein analysis using an improved peptic in-solution digestion protocol.
    Rietschel B; Bornemann S; Arrey TN; Baeumlisberger D; Karas M; Meyer B
    Proteomics; 2009 Dec; 9(24):5553-7. PubMed ID: 20017156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of membrane phospholipids and glycolipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry.
    Qiu D; Games MP; Xiao X; Games DE; Walton TJ
    Rapid Commun Mass Spectrom; 2000; 14(17):1586-91. PubMed ID: 10960912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii.
    Sprott GD; Larocque S; Cadotte N; Dicaire CJ; McGee M; Brisson JR
    Biochim Biophys Acta; 2003 Sep; 1633(3):179-88. PubMed ID: 14499737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot - Purple membrane complexes under two-photon excitation.
    Krivenkov V; Samokhvalov P; Nabiev I
    Biosens Bioelectron; 2019 Jul; 137():117-122. PubMed ID: 31085400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging of reconstituted purple membranes by atomic force microscopy.
    Kim DT; Blanch HW; Radke CJ
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):263-76. PubMed ID: 15748822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots.
    Rakovich A; Sukhanova A; Bouchonville N; Lukashev E; Oleinikov V; Artemyev M; Lesnyak V; Gaponik N; Molinari M; Troyon M; Rakovich YP; Donegan JF; Nabiev I
    Nano Lett; 2010 Jul; 10(7):2640-8. PubMed ID: 20521831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin.
    Gordeliy VI; Schlesinger R; Efremov R; Büldt G; Heberle J
    Methods Mol Biol; 2003; 228():305-16. PubMed ID: 12824562
    [No Abstract]   [Full Text] [Related]  

  • 35. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum.
    Zaccai G
    Biophys Chem; 2000 Aug; 86(2-3):249-57. PubMed ID: 11026689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nature of thermal transitions in purple membranes from Halobacterium halobium.
    Shnyrov VL; Azuaga AI; Mateo PL
    Biochem Soc Trans; 1994 Aug; 22(3):367S. PubMed ID: 7821619
    [No Abstract]   [Full Text] [Related]  

  • 37. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum.
    Verchère A; Ou WL; Ploier B; Morizumi T; Goren MA; Bütikofer P; Ernst OP; Khelashvili G; Menon AK
    Sci Rep; 2017 Aug; 7(1):9522. PubMed ID: 28842688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane.
    Chen Z; Sheves M; Lewis A; Bouevitch O
    Biophys J; 1994 Sep; 67(3):1155-60. PubMed ID: 7811928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of dipolar couplings in a uniformly (13)C,(15)N-labeled membrane protein: distances between the Schiff base and aspartic acids in the active site of bacteriorhodopsin.
    Jaroniec CP; Lansing JC; Tounge BA; Belenky M; Herzfeld J; Griffin RG
    J Am Chem Soc; 2001 Dec; 123(51):12929-30. PubMed ID: 11749563
    [No Abstract]   [Full Text] [Related]  

  • 40. Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid.
    Matsubara T; Iida-Tanaka N; Kamekura M; Moldoveanu N; Ishizuka I; Onishi H; Hayashi A; Kates M
    Biochim Biophys Acta; 1994 Aug; 1214(1):97-108. PubMed ID: 8068733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.