These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 10727687)
1. Comparison of the metabolism of Acartia clausi and A. tonsa: influence of temperature and salinity. Gaudy R; Cervetto G; Pagano M J Exp Mar Biol Ecol; 2000 Apr; 247(1):51-65. PubMed ID: 10727687 [TBL] [Abstract][Full Text] [Related]
2. Reduced Survival and Disruption of Female Reproductive Output in Two Copepod Species ( Hafez T; Villate F; Ortiz-Zarragoitia M Toxics; 2023 Apr; 11(5):. PubMed ID: 37235221 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the relative sensitivity of the copepods Acartia tonsa and Acartia clausi exposed to sediment-derived elutriates from the Bagnoli-Coroglio industrial area. Carotenuto Y; Vitiello V; Gallo A; Libralato G; Trifuoggi M; Toscanesi M; Lofrano G; Esposito F; Buttino I Mar Environ Res; 2020 Mar; 155():104878. PubMed ID: 31975692 [TBL] [Abstract][Full Text] [Related]
4. Effect of 2,4-dihydroxybenzophenone (BP1) on early life-stage development of the marine copepod Acartia tonsa at different temperatures and salinities. Kusk KO; Avdolli M; Wollenberger L Environ Toxicol Chem; 2011 Apr; 30(4):959-66. PubMed ID: 21194178 [TBL] [Abstract][Full Text] [Related]
5. Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Delpy F; Pagano M; Blanchot J; Carlotti F; Thibault-Botha D Mar Pollut Bull; 2012 Sep; 64(9):1921-32. PubMed ID: 22776776 [TBL] [Abstract][Full Text] [Related]
6. Physiological and molecular responses of the copepods Acartia clausi and Acartia tonsa to nickel nanoparticles and nickel chloride. Rotolo F; Vitiello V; Souissi S; Carotenuto Y; Buttino I Chemosphere; 2024 Jul; 360():142302. PubMed ID: 38763394 [TBL] [Abstract][Full Text] [Related]
7. Infestation of the Copepod Acartia tonsa with the Stalked Ciliate Zoothamnium. Herman SS; Mihursky JA Science; 1964 Oct; 146(3643):543-4. PubMed ID: 17806812 [TBL] [Abstract][Full Text] [Related]
8. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa. Pavlaki MD; Morgado RG; van Gestel CAM; Calado R; Soares AMVM; Loureiro S Ecotoxicol Environ Saf; 2017 Nov; 145():142-149. PubMed ID: 28732297 [TBL] [Abstract][Full Text] [Related]
9. Thermal tolerance of Acartia tonsa: In relation to acclimation temperature and life stage. Sunar MC; Kır M J Therm Biol; 2021 Dec; 102():103116. PubMed ID: 34863480 [TBL] [Abstract][Full Text] [Related]
10. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana. Elliott DT; Pierson JJ; Roman MR PLoS One; 2013; 8(5):e63987. PubMed ID: 23691134 [TBL] [Abstract][Full Text] [Related]
11. What factors drive copepod community distribution in the Gulf of Gabes, Eastern Mediterranean Sea? Drira Z; Bel Hassen M; Ayadi H; Aleya L Environ Sci Pollut Res Int; 2014 Feb; 21(4):2918-34. PubMed ID: 24170503 [TBL] [Abstract][Full Text] [Related]
12. Acute silver toxicity in the euryhaline copepod Acartia tonsa: influence of salinity and food. Pedroso MS; Bersano JG; Bianchini A Environ Toxicol Chem; 2007 Oct; 26(10):2158-65. PubMed ID: 17867869 [TBL] [Abstract][Full Text] [Related]
13. Could some procedures commonly used in bioassays with the copepod Acartia tonsa Dana 1849 distort results? Lopes LFP; Agostini VO; Muxagata E Ecotoxicol Environ Saf; 2018 Apr; 150():353-365. PubMed ID: 29246582 [TBL] [Abstract][Full Text] [Related]
14. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model. Pinho GL; Bianchini A Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639 [TBL] [Abstract][Full Text] [Related]
15. Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels. Rosas C; Cuzon G; Gaxiola G; Le Priol Y; Pascual C; Rossignyol J; Contreras F; Sanchez A; Van Wormhoudt A J Exp Mar Biol Ecol; 2001 Apr; 259(1):1-22. PubMed ID: 11325374 [TBL] [Abstract][Full Text] [Related]
16. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality. Buttino I; Vitiello V; Macchia S; Scuderi A; Pellegrini D Ecotoxicol Environ Saf; 2018 Mar; 149():1-9. PubMed ID: 29145160 [TBL] [Abstract][Full Text] [Related]
17. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Uliano E; Cataldi M; Carella F; Migliaccio O; Iaccarino D; Agnisola C Comp Biochem Physiol A Mol Integr Physiol; 2010 Nov; 157(3):283-90. PubMed ID: 20674761 [TBL] [Abstract][Full Text] [Related]
18. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion. Urzúa Á; Urbina MA Comp Biochem Physiol A Mol Integr Physiol; 2017 Aug; 210():35-43. PubMed ID: 28558963 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal variability in a copepod community associated with fluctuations in salinity and trophic state in an artificial brackish reservoir at Saemangeum, South Korea. Oda Y; Nakano S; Suh JM; Oh HJ; Jin MY; Kim YJ; Sakamoto M; Chang KH PLoS One; 2018; 13(12):e0209403. PubMed ID: 30571703 [TBL] [Abstract][Full Text] [Related]
20. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa. Sew G; Calbet A; Drillet G; Todd PA Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]