BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10727778)

  • 1. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits.
    Nakao N; Itakura T
    Prog Neurobiol; 2000 Jun; 61(3):313-38. PubMed ID: 10727778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal tissue transplantation in non-human primates.
    Kendall AL; Hantraye P; Palfi S
    Prog Brain Res; 2000; 127():381-404. PubMed ID: 11142037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease.
    Nakao N; Ogura M; Nakai K; Itakura T
    Neuroscience; 1999 Jan; 88(2):469-77. PubMed ID: 10197767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
    Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G
    Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease.
    Samadi P; Boutet A; Rymar VV; Rawal K; Maheux J; Kvann JC; Tomaszewski M; Beaubien F; Cloutier JF; Levesque D; Sadikot AF
    Genes Brain Behav; 2013 Feb; 12(1):108-24. PubMed ID: 23006318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention.
    Watts C; Dunnett SB
    J Neurosurg; 1998 Aug; 89(2):267-74. PubMed ID: 9688122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural transplantation of hNT neurons for Huntington's disease.
    Hurlbert MS; Gianani RI; Hutt C; Freed CR; Kaddis FG
    Cell Transplant; 1999; 8(1):143-51. PubMed ID: 10338282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranigral transplants of GABA-rich striatal tissue induce behavioral recovery in the rat Parkinson model and promote the effects obtained by intrastriatal dopaminergic transplants.
    Winkler C; Bentlage C; Nikkhah G; Samii M; Björklund A
    Exp Neurol; 1999 Feb; 155(2):165-86. PubMed ID: 10072293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats.
    Pritzel M; Isacson O; Brundin P; Wiklund L; Björklund A
    Exp Brain Res; 1986; 65(1):112-26. PubMed ID: 2433142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Protective effect of intrastriatal grafts in an experimental model of Huntington's disease. Behavioral and morphological correlation].
    Levivier M; Pearlman SH; Gash DM; Brotchi J
    Neurochirurgie; 1991; 37(3):148-59. PubMed ID: 1831884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of fronto-striatal reconstruction by striatal grafts.
    Dunnett SB
    Novartis Found Symp; 2000; 231():21-41; discussion 41-52. PubMed ID: 11131540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the human striatum: implications for fetal striatal transplantation in the treatment of Huntington's disease.
    Freeman TB; Sanberg PR; Isacson O
    Cell Transplant; 1995; 4(6):539-45. PubMed ID: 8714776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease.
    McBride JL; Behrstock SP; Chen EY; Jakel RJ; Siegel I; Svendsen CN; Kordower JH
    J Comp Neurol; 2004 Jul; 475(2):211-9. PubMed ID: 15211462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopaminergic reinnervation of the globus pallidus by fetal nigral grafts in the rodent model of Parkinson's disease.
    Bartlett LE; Mendez I
    Cell Transplant; 2005; 14(2-3):119-27. PubMed ID: 15881421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns.
    Klein A; Lane EL; Dunnett SB
    Cell Transplant; 2013; 22(10):1735-51. PubMed ID: 23067670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupted striatal neuron inputs and outputs in Huntington's disease.
    Reiner A; Deng YP
    CNS Neurosci Ther; 2018 Apr; 24(4):250-280. PubMed ID: 29582587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrastriatal mesencephalic grafts affect neuronal activity in basal ganglia nuclei and their target structures in a rat model of Parkinson's disease.
    Nakao N; Ogura M; Nakai K; Itakura T
    J Neurosci; 1998 Mar; 18(5):1806-17. PubMed ID: 9465005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.