These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10727778)

  • 41. Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington's disease.
    Mazzocchi-Jones D; Döbrössy M; Dunnett SB
    Eur J Neurosci; 2009 Dec; 30(11):2134-42. PubMed ID: 20128850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mature intrastriatal striatal grafts revert the changes in the expression of pallidal and thalamic alpha 1, alpha 2 and beta 2/3 GABAA receptor subunit induced by ibotenic acid lesions in the rat striatum.
    Caruncho HJ; Rodríguez-Pallares J; Guerra MJ; Labandeira-García JL
    Brain Res Mol Brain Res; 1998 Jun; 57(2):301-9. PubMed ID: 9675428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dopaminergic grafts implanted into the neonatal or adult striatum: comparative effects on rotation and paw reaching deficits induced by subsequent unilateral nigrostriatal lesions in adulthood.
    Abrous DN; Torres EM; Dunnett SB
    Neuroscience; 1993 Jun; 54(3):657-68. PubMed ID: 8332254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease.
    Barker RA; Mason SL; Harrower TP; Swain RA; Ho AK; Sahakian BJ; Mathur R; Elneil S; Thornton S; Hurrelbrink C; Armstrong RJ; Tyers P; Smith E; Carpenter A; Piccini P; Tai YF; Brooks DJ; Pavese N; Watts C; Pickard JD; Rosser AE; Dunnett SB;
    J Neurol Neurosurg Psychiatry; 2013 Jun; 84(6):657-65. PubMed ID: 23345280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum--I. Subcortical afferents.
    Wictorin K; Isacson O; Fischer W; Nothias F; Peschanski M; Björklund A
    Neuroscience; 1988 Nov; 27(2):547-62. PubMed ID: 2464147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural grafting in a rat model of Huntington's disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting.
    Isacson O; Brundin P; Gage FH; Björklund A
    Neuroscience; 1985 Dec; 16(4):799-817. PubMed ID: 2936982
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Connectivities of the striatal grafts in adult rat brain: a rich afference and scant striatonigral efference.
    Zhou FC; Buchwald N
    Brain Res; 1989 Dec; 504(1):15-30. PubMed ID: 2598010
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intraparenchymal fetal striatal transplants and recovery in kainic acid lesioned rats.
    Giordano M; Hagenmeyer-Houser SH; Sanberg PR
    Brain Res; 1988 Apr; 446(1):183-8. PubMed ID: 2967100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autoradiographic study of striatal dopamine re-uptake sites and dopamine D1 and D2 receptors in a 6-hydroxydopamine and quinolinic acid double-lesion rat model of striatonigral degeneration (multiple system atrophy) and effects of embryonic ventral mesencephalic, striatal or co-grafts.
    Puschban Z; Scherfler C; Granata R; Laboyrie P; Quinn NP; Jenner P; Poewe W; Wenning GK
    Neuroscience; 2000; 95(2):377-88. PubMed ID: 10658617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intraparenchymal striatal transplants required for maintenance of behavioral recovery in an animal model of Huntington's disease.
    Sanberg PR; Giòrdano M; Henault MA; Nash DR; Ragozzino ME; Hagenmeyer-Houser SH
    J Neural Transplant; 1989; 1(1):23-31. PubMed ID: 2535266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison between normal developing striatum and developing striatal grafts using drug-induced Fos expression and neuron-specific enolase immunohistochemistry.
    Labandeira-Garcia JL; Tobio JP; Guerra MJ
    Neuroscience; 1994 May; 60(2):399-415. PubMed ID: 7915411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Behavioral effects of fetal neural transplants: relevance to Huntington's disease.
    Sanberg PR; Koutouzis TK; Freeman TB; Cahill DW; Norman AB
    Brain Res Bull; 1993; 32(5):493-6. PubMed ID: 8221141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anatomical and functional reconstruction of the nigrostriatal pathway by intranigral transplants.
    Gaillard A; Decressac M; Frappé I; Fernagut PO; Prestoz L; Besnard S; Jaber M
    Neurobiol Dis; 2009 Sep; 35(3):477-88. PubMed ID: 19616502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease.
    Döbrössy MD; Dunnett SB
    Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuroanatomical Visualization of the Impaired Striatal Connectivity in Huntington's Disease Mouse Model.
    Kim D; Jeon J; Cheong E; Kim DJ; Ryu H; Seo H; Kim YK
    Mol Neurobiol; 2016 May; 53(4):2276-86. PubMed ID: 25976370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents.
    Campbell K; Kalén P; Wictorin K; Lundberg C; Mandel RJ; Björklund A
    Neuroscience; 1993 Mar; 53(2):403-15. PubMed ID: 8098510
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice.
    Klapstein GJ; Fisher RS; Zanjani H; Cepeda C; Jokel ES; Chesselet MF; Levine MS
    J Neurophysiol; 2001 Dec; 86(6):2667-77. PubMed ID: 11731527
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation.
    Bachoud-Lévi AC; Rémy P; Nguyen JP; Brugières P; Lefaucheur JP; Bourdet C; Baudic S; Gaura V; Maison P; Haddad B; Boissé MF; Grandmougin T; Jény R; Bartolomeo P; Dalla Barba G; Degos JD; Lisovoski F; Ergis AM; Pailhous E; Cesaro P; Hantraye P; Peschanski M
    Lancet; 2000 Dec; 356(9246):1975-9. PubMed ID: 11130527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease.
    Araujo DM; Hilt DC
    Neuroscience; 1997 Dec; 81(4):1099-110. PubMed ID: 9330371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intrastriatal transplants of embryonic dopaminergic neurons counteract the increase of striatal enkephalin immunostaining but not serotoninergic sprouting elicited by a neonatal lesion of the nigrostriatal dopaminergic pathway.
    Abrous DN; Manier M; Mennicken F; Feuerstein C; Le Moal M; Herman JP
    Eur J Neurosci; 1993 Feb; 5(2):128-36. PubMed ID: 7903185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.