BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10727926)

  • 1. Mismatch negativity: a tool for the assessment of stimuli discrimination in cochlear implant subjects.
    Wable J; van den Abbeele T; Gallégo S; Frachet B
    Clin Neurophysiol; 2000 Apr; 111(4):743-51. PubMed ID: 10727926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users.
    Kelly AS; Purdy SC; Thorne PR
    Clin Neurophysiol; 2005 Jun; 116(6):1235-46. PubMed ID: 15978485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An objective auditory measure to assess speech recognition in adult cochlear implant users.
    Turgeon C; Lazzouni L; Lepore F; Ellemberg D
    Clin Neurophysiol; 2014 Apr; 125(4):827-835. PubMed ID: 24209981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term auditory processing outcomes in early implanted young adults with cochlear implants: The mismatch negativity vs. P300 response.
    Abrahamse R; Beynon A; Piai V
    Clin Neurophysiol; 2021 Jan; 132(1):258-268. PubMed ID: 33139199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mismatch negativity cortical evoked potential elicited by speech in cochlear-implant users.
    Kraus N; Micco AG; Koch DB; McGee T; Carrell T; Sharma A; Wiet RJ; Weingarten CZ
    Hear Res; 1993 Feb; 65(1-2):118-24. PubMed ID: 8458744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between auditory perception skills and mismatch negativity recorded in free field in cochlear-implant users.
    Roman S; Canévet G; Marquis P; Triglia JM; Liégeois-Chauvel C
    Hear Res; 2005 Mar; 201(1-2):10-20. PubMed ID: 15721556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use.
    Ponton CW; Eggermont JJ; Don M; Waring MD; Kwong B; Cunningham J; Trautwein P
    Audiol Neurootol; 2000; 5(3-4):167-85. PubMed ID: 10859411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory cortical activity to different voice onset times in cochlear implant users.
    Han JH; Zhang F; Kadis DS; Houston LM; Samy RN; Smith ML; Dimitrijevic A
    Clin Neurophysiol; 2016 Feb; 127(2):1603-1617. PubMed ID: 26616545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical encoding of timbre changes in cochlear implant users.
    Zhang F; Benson C; Cahn SJ
    J Am Acad Audiol; 2013 Jan; 24(1):46-58. PubMed ID: 23231816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saliency of Vowel Features in Neural Responses of Cochlear Implant Users.
    Prévost F; Lehmann A
    Clin EEG Neurosci; 2018 Nov; 49(6):388-397. PubMed ID: 29690785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):441-53. PubMed ID: 25658746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective measures of electrode discrimination with electrically evoked auditory change complex and speech-perception abilities in children with auditory neuropathy spectrum disorder.
    He S; Grose JH; Teagle HF; Buchman CA
    Ear Hear; 2014; 35(3):e63-74. PubMed ID: 24231629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic auditory processing of english words as indexed by the mismatch negativity, using a multiple deviant paradigm.
    Pettigrew CM; Murdoch BE; Ponton CW; Finnigan S; Alku P; Kei J; Sockalingam R; Chenery HJ
    Ear Hear; 2004 Jun; 25(3):284-301. PubMed ID: 15179119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Correlates of Phonetic Learning in Postlingually Deafened Cochlear Implant Listeners.
    Miller S; Zhang Y; Nelson P
    Ear Hear; 2016; 37(5):514-28. PubMed ID: 26928002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch negativity brain response as an index of speech perception recovery in cochlear-implant recipients.
    Lonka E; Kujala T; Lehtokoski A; Johansson R; Rimmanen S; Alho K; Näätänen R
    Audiol Neurootol; 2004; 9(3):160-2. PubMed ID: 15084820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive evoked potentials to speech and tonal stimuli in children with implants.
    Kileny PR; Boerst A; Zwolan T
    Otolaryngol Head Neck Surg; 1997 Sep; 117(3 Pt 1):161-9. PubMed ID: 9334760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological and phonological change detection measures of auditory word processing in normal Persian-speaking children.
    Ziatabar Ahmadi SZ; Mahmoudian S; Ashayeri H; Allaeddini F; Farhadi M
    Int J Pediatr Otorhinolaryngol; 2016 Nov; 90():220-226. PubMed ID: 27729137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the clinical relevance of mismatch negativity: results from subjects with normal hearing and cochlear implant users.
    Groenen P; Snik A; van den Broek P
    Audiol Neurootol; 1996; 1(2):112-24. PubMed ID: 9390795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mismatch negativity (MMN) objectively reflects timbre discrimination thresholds in normal-hearing listeners and cochlear implant users.
    Rahne T; Plontke SK; Wagner L
    Brain Res; 2014 Oct; 1586():143-51. PubMed ID: 25152464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.