BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10728426)

  • 1. Reversal of glibenclamide-induced coronary vasoconstriction by enhanced perfusion pulsatility: possible role for nitric oxide.
    Pagliaro P; Paolocci N; Isoda T; Saavedra WF; Sunagawa G; Kass DA
    Cardiovasc Res; 2000 Mar; 45(4):1001-9. PubMed ID: 10728426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium-sensitive K(+) channels and nitric oxide in in vivo coronary vasodilation from enhanced perfusion pulsatility.
    Paolocci N; Pagliaro P; Isoda T; Saavedra FW; Kass DA
    Circulation; 2001 Jan; 103(1):119-24. PubMed ID: 11136696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse pressure-related changes in coronary flow in vivo are modulated by nitric oxide and adenosine.
    Recchia FA; Senzaki H; Saeki A; Byrne BJ; Kass DA
    Circ Res; 1996 Oct; 79(4):849-56. PubMed ID: 8831510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-mediated vasodilation of human epicardial coronary arteries: effect of inhibition of nitric oxide synthesis.
    Shiode N; Morishima N; Nakayama K; Yamagata T; Matsuura H; Kajiyama G
    J Am Coll Cardiol; 1996 Feb; 27(2):304-10. PubMed ID: 8557898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary vasoconstriction produced by vasopressin in anesthetized goats. Role of vasopressin V1 and V2 receptors and nitric oxide.
    Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Eur J Pharmacol; 1998 Jan; 342(2-3):225-33. PubMed ID: 9548390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways.
    Merkus D; Haitsma DB; Fung TY; Assen YJ; Verdouw PD; Duncker DJ
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H424-33. PubMed ID: 12637354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans.
    Lefroy DC; Crake T; Uren NG; Davies GJ; Maseri A
    Circulation; 1993 Jul; 88(1):43-54. PubMed ID: 8319355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.
    Ishibashi Y; Duncker DJ; Zhang J; Bache RJ
    Circ Res; 1998 Feb; 82(3):346-59. PubMed ID: 9486663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of ATP-sensitive potassium channels in regulating coronary microcirculation.
    Komaru T; Kanatsuka H; Dellsperger K; Takishima T
    Biorheology; 1993; 30(5-6):371-80. PubMed ID: 8186403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation.
    Tune JD; Richmond KN; Gorman MW; Feigl EO
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H868-75. PubMed ID: 11158988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.
    Pagliaro P; Senzaki H; Paolocci N; Isoda T; Sunagawa G; Recchia FA; Kass DA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):271-80. PubMed ID: 10517818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular ATP-dependent potassium channels, nitric oxide, and human forearm reactive hyperemia.
    Bank AJ; Sih R; Mullen K; Osayamwen M; Lee PC
    Cardiovasc Drugs Ther; 2000 Feb; 14(1):23-9. PubMed ID: 10755197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta 2-adrenergic dilation of resistance coronary vessels involves KATP channels and nitric oxide in conscious dogs.
    Ming Z; Parent R; Lavallée M
    Circulation; 1997 Mar; 95(6):1568-76. PubMed ID: 9118527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Adaptation to short-term stress exposure increases the activity ATP-sensitive potassium channels in the smooth muscle cells of coronary blood vessels].
    Lazuko SS; Solodkov AP; Manukhina EB
    Ross Fiziol Zh Im I M Sechenova; 2006 Dec; 92(12):1444-62. PubMed ID: 17523466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evidence for nitric oxide-mediated calcium-activated potassium-channel activation during human endotoxemia.
    Pickkers P; Dorresteijn MJ; Bouw MP; van der Hoeven JG; Smits P
    Circulation; 2006 Aug; 114(5):414-21. PubMed ID: 16864730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-independent dilation of conductance coronary arteries to acetylcholine in conscious dogs.
    Ming Z; Parent R; Lavallée M
    Circ Res; 1997 Dec; 81(6):977-87. PubMed ID: 9400378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal role of nitric oxide in basal coronary flow regulation and cardiac energetics of blood-perfused isolated canine heart.
    Saeki A; Recchia FA; Senzaki H; Kass DA
    J Physiol; 1996 Mar; 491 ( Pt 2)(Pt 2):455-63. PubMed ID: 8866868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary vascular responsiveness to adenosine is impaired additively by blockade of nitric oxide synthesis and a sulfonylurea.
    Davis CA; Sherman AJ; Yaroshenko Y; Harris KR; Hedjbeli S; Parker MA; Klocke FJ
    J Am Coll Cardiol; 1998 Mar; 31(4):816-22. PubMed ID: 9525553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide synthesis in the regulation of coronary vascular tone in the isolated perfused rabbit heart.
    Smith RE; Palmer RM; Bucknall CA; Moncada S
    Cardiovasc Res; 1992 May; 26(5):508-12. PubMed ID: 1446321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.