BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10728426)

  • 21. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs.
    Chu A; Chambers DE; Lin CC; Kuehl WD; Palmer RM; Moncada S; Cobb FR
    J Clin Invest; 1991 Jun; 87(6):1964-8. PubMed ID: 2040689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of cross-linked hemoglobin on regional vascular conductance in dogs.
    Dietz NM; Martin CM; Beltran-del-Rio AG; Joyner MJ
    Anesth Analg; 1997 Aug; 85(2):265-73. PubMed ID: 9249098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of actions of sumatriptan on coronary flow before and after endothelial dysfunction in guinea-pig isolated heart.
    Ellwood AJ; Curtis MJ
    Br J Pharmacol; 1997 Mar; 120(6):1039-48. PubMed ID: 9134215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by NG-monomethyl-L-arginine but not glibenclamide.
    Jiang C; Collins P
    Br J Pharmacol; 1994 Mar; 111(3):711-6. PubMed ID: 8019749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contrasting effects of blockade of nitric oxide formation on resistance and conductance coronary vessels in conscious dogs.
    Parent R; Hamdad N; Ming Z; Lavallée M
    Cardiovasc Res; 1996 Apr; 31(4):555-67. PubMed ID: 8689647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glibenclamide, a specific inhibitor of ATP-sensitive K+ channels, inhibits coronary vasodilation induced by angiotensin II-receptor antagonists.
    Tada H; Egashira K; Yamamoto M; Ueno H; Takemoto M; Shimokawa H; Takeshita A
    J Cardiovasc Pharmacol; 1997 Sep; 30(3):313-9. PubMed ID: 9300314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intact nitric oxide production is obligatory for the sustained flow response during hypercapnic acidosis in guinea pig heart.
    Heintz A; Koch T; Deussen A
    Cardiovasc Res; 2005 Apr; 66(1):55-63. PubMed ID: 15769448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional coronary haemodynamic effects of two inhibitors of nitric oxide synthesis in anaesthetized, open-chest dogs.
    Richard V; Berdeaux A; la Rochelle CD; Giudicelli JF
    Br J Pharmacol; 1991 Sep; 104(1):59-64. PubMed ID: 1786519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct in vivo observation of subendocardial arteriolar response during reactive hyperemia.
    Yada T; Hiramatsu O; Kimura A; Tachibana H; Chiba Y; Lu S; Goto M; Ogasawara Y; Tsujioka K; Kajiya F
    Circ Res; 1995 Sep; 77(3):622-31. PubMed ID: 7641332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutathione causes coronary vasodilation via a nitric oxide- and soluble guanylate cyclase-dependent mechanism.
    Cheung PY; Schulz R
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1231-8. PubMed ID: 9321811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endogenous basal nitric oxide production does not control myocardial oxygen consumption or function.
    Sadoff JD; Scholz PM; Weiss HR
    Proc Soc Exp Biol Med; 1996 Apr; 211(4):332-8. PubMed ID: 8618938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide production by coronary conductance and resistance vessels in hypercholesterolemia patients.
    Shiode N; Nakayama K; Morishima N; Yamagata T; Matsuura H; Kajiyama G
    Am Heart J; 1996 Jun; 131(6):1051-7. PubMed ID: 8644581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced nitric oxide formation causes coronary vasoconstriction and impaired dilator responses to endogenous agonists and hypoxia in dogs.
    Huckstorf C; Zanzinger J; Fink B; Bassenge E
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Apr; 349(4):367-73. PubMed ID: 7914678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of coronary vascular adenosine receptors in the mouse.
    Flood A; Headrick JP
    Br J Pharmacol; 2001 Aug; 133(7):1063-72. PubMed ID: 11487517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of endogenous metabolites on autoregulation and dilational reserve of coronary vessels].
    Solodkov AP; Bozhko AP
    Biull Eksp Biol Med; 1993 May; 115(5):456-8. PubMed ID: 7519066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of K+ATP channels in local metabolic coronary vasodilation.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coronary vascular K+ATP channels contribute to the maintenance of myocardial perfusion in dogs with pacing-induced heart failure.
    Yamamoto M; Egashira K; Arimura K; Tada H; Shimokawa H; Takeshita A
    Jpn Circ J; 2000 Sep; 64(9):701-7. PubMed ID: 10981856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. K(ATP) channel opening is an endogenous mechanism of protection against the no-reflow phenomenon but its function is compromised by hypercholesterolemia.
    Genda S; Miura T; Miki T; Ichikawa Y; Shimamoto K
    J Am Coll Cardiol; 2002 Oct; 40(7):1339-46. PubMed ID: 12383584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Wallerstedt SM; Bodelsson M
    Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of K(+)(ATP) channels and adenosine in regulation of coronary blood flow in the hypertrophied left ventricle.
    Melchert PJ; Duncker DJ; Traverse JH; Bache RJ
    Am J Physiol; 1999 Aug; 277(2 Pt 2):H617-25. PubMed ID: 10444487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.