These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10728426)

  • 61. Basal release of nitric oxide is decreased in the coronary circulation in patients with heart failure.
    Mohri M; Egashira K; Tagawa T; Kuga T; Tagawa H; Harasawa Y; Shimokawa H; Takeshita A
    Hypertension; 1997 Jul; 30(1 Pt 1):50-6. PubMed ID: 9231820
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs.
    Narishige T; Egashira K; Akatsuka Y; Katsuda Y; Numaguchi K; Sakata M; Takeshita A
    Circ Res; 1993 Oct; 73(4):771-6. PubMed ID: 8370126
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Contribution of endothelin to the coronary vasoconstriction in the isolated rat heart induced by nitric oxide synthase inhibition.
    Wang QD; Gonon A; Shimizu M; Sjöquist PO; Pernow J
    Acta Physiol Scand; 1998 Aug; 163(4):325-30. PubMed ID: 9789575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of arginine vasopressin on endothelin production in the human forearm vascular bed.
    Postma CT; Maessen SM; Thien T; Smits P
    Neth J Med; 2005 Jun; 63(6):199-204. PubMed ID: 16011011
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vivo location and mechanism of EDHF-mediated vasodilation in canine coronary microcirculation.
    Nishikawa Y; Stepp DW; Chilian WM
    Am J Physiol; 1999 Sep; 277(3):H1252-9. PubMed ID: 10484447
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 68. KCa+ channels contribute to exercise-induced coronary vasodilation in swine.
    Merkus D; Sorop O; Houweling B; Hoogteijling BA; Duncker DJ
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2090-7. PubMed ID: 16699076
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modulation of adrenergic coronary vasoconstriction via ATP-sensitive potassium channel.
    Mori H; Chujo M; Tanaka E; Yamakawa A; Shinozaki Y; Mohamed MU; Nakazawa H
    Am J Physiol; 1995 Mar; 268(3 Pt 2):H1077-85. PubMed ID: 7900861
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nitric oxide-mediated flow-dependent dilation is impaired in coronary arteries in patients with coronary spastic angina.
    Kugiyama K; Ohgushi M; Motoyama T; Sugiyama S; Ogawa H; Yoshimura M; Inobe Y; Hirashima O; Kawano H; Soejima H; Yasue H
    J Am Coll Cardiol; 1997 Oct; 30(4):920-6. PubMed ID: 9316519
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential role of endothelial versus neuronal nitric oxide synthase in the regulation of coronary blood flow during pacing-induced increases in cardiac workload.
    Shabeeh H; Melikian N; Dworakowski R; Casadei B; Chowienczyk P; Shah AM
    Am J Physiol Heart Circ Physiol; 2013 May; 304(9):H1277-82. PubMed ID: 23479261
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of endothelium-derived nitric oxide in acetylcholine-induced coronary vasoconstriction in closed-chest pigs.
    Hata H; Egashira K; Fukai T; Ohara Y; Kasuya H; Takahashi T; Takeshita A
    Coron Artery Dis; 1993 Oct; 4(10):891-8. PubMed ID: 8269195
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of inhibition of nitric oxide formation on the regulation of coronary blood flow in anesthetized dogs.
    Solzbach U; Liao J; Eigler NL; Zeiher AM
    Basic Res Cardiol; 1995; 90(6):489-97. PubMed ID: 8773194
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of ATP-sensitive potassium channel inhibition on resting coronary vascular responses in humans.
    Farouque HM; Worthley SG; Meredith IT; Skyrme-Jones RA; Zhang MJ
    Circ Res; 2002 Feb; 90(2):231-6. PubMed ID: 11834717
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation.
    Duffy SJ; Castle SF; Harper RW; Meredith IT
    Circulation; 1999 Nov; 100(19):1951-7. PubMed ID: 10556220
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Coronary vasomotor responses to isometric handgrip exercise are primarily mediated by nitric oxide: a noninvasive MRI test of coronary endothelial function.
    Hays AG; Iantorno M; Soleimanifard S; Steinberg A; Schär M; Gerstenblith G; Stuber M; Weiss RG
    Am J Physiol Heart Circ Physiol; 2015 Jun; 308(11):H1343-50. PubMed ID: 25820391
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanisms of coronary microvascular dilation induced by the activation of pertussis toxin-sensitive G proteins are vessel-size dependent. Heterogeneous involvement of nitric oxide pathway and ATP-sensitive K+ channels.
    Komaru T; Tanikawa T; Sugimura A; Kumagai T; Sato K; Kanatsuka H; Shirato K
    Circ Res; 1997 Jan; 80(1):1-10. PubMed ID: 8978316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Coronary effects of vasopressin during partial ischemia and reperfusion in anesthetized goats. Role of nitric oxide and prostanoids.
    Martínez MA; Fernández N; Climent B; García-Villalón AL; Monge L; Sanz E; Diéguez G
    Eur J Pharmacol; 2003 Jul; 473(1):55-63. PubMed ID: 12877938
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nitric oxide contributes to the regulation of vasomotor tone but does not modulate O(2)-consumption in exercising swine.
    Duncker DJ; Stubenitsky R; Tonino PA; Verdouw PD
    Cardiovasc Res; 2000 Sep; 47(4):738-48. PubMed ID: 10974222
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Augmented endothelium-dependent constriction to hypoxia early and late following reperfusion of the canine coronary artery.
    Pearson PJ; Lin PJ; Schaff HV; Vanhoutte PM
    Clin Exp Pharmacol Physiol; 1996 Aug; 23(8):634-41. PubMed ID: 8886481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.