BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10728427)

  • 21. Homocysteine decreases endothelium-dependent vasorelaxation in porcine arteries.
    Chen C; Conklin BS; Ren Z; Zhong DS
    J Surg Res; 2002 Jan; 102(1):22-30. PubMed ID: 11792147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estrogen pretreatment directly potentiates endothelium-dependent vasorelaxation of porcine coronary arteries.
    Bell DR; Rensberger HJ; Koritnik DR; Koshy A
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H377-83. PubMed ID: 7840287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired endothelium-derived hyperpolarizing factor-mediated relaxation in coronary arteries by cold storage with University of Wisconsin solution.
    He GW; Yang CQ
    J Thorac Cardiovasc Surg; 1998 Jul; 116(1):122-30. PubMed ID: 9671906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery.
    Kühberger E; Groschner K; Kukovetz WR; Brunner F
    Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM; Ryman T; Högestätt ED
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insurmountable antagonism of AT-1015, a 5-HT2 antagonist, on serotonin-induced endothelium-dependent relaxation in porcine coronary artery.
    Rashid M; Nakazawa M; Nagatomo T
    J Pharm Pharmacol; 2003 Jun; 55(6):827-32. PubMed ID: 12841944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smooth muscle mediates circumferential conduction of hyperpolarization and relaxation to focal endothelial cell activation in large coronary arteries.
    Selemidis S; Cocks T
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Apr; 375(2):85-94. PubMed ID: 17340126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The phytoestrogen genistein enhances endothelium-independent relaxation in the porcine coronary artery.
    Lee MY; Man RY
    Eur J Pharmacol; 2003 Nov; 481(2-3):227-32. PubMed ID: 14642790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contractile and relaxant properties of rat-isolated pulmonary veins related to localization and histology.
    Bronquard C; Maupoil V; Arbeille B; Fetissof F; Findlay I; Cosnay P; Freslon JL
    Fundam Clin Pharmacol; 2007 Feb; 21(1):55-65. PubMed ID: 17227445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of antiproliferative agents on vascular function in normal and in vitro balloon-injured porcine coronary arteries.
    Kennedy S; Wadsworth RM; Wainwright CL
    Eur J Pharmacol; 2003 Nov; 481(1):101-7. PubMed ID: 14637181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melatonin inhibits nitrate tolerance in isolated coronary arteries.
    O'Rourke ST; Hammad H; Delagrange P; Scalbert E; Vanhoutte PM
    Br J Pharmacol; 2003 Aug; 139(7):1326-32. PubMed ID: 12890712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sex differences in endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions?
    Wong PS; Roberts RE; Randall MD
    Br J Pharmacol; 2014 Jun; 171(11):2751-66. PubMed ID: 24467384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct roles of estrogen receptors alpha and beta mediating acute vasodilation of epicardial coronary arteries.
    Traupe T; Stettler CD; Li H; Haas E; Bhattacharya I; Minotti R; Barton M
    Hypertension; 2007 Jun; 49(6):1364-70. PubMed ID: 17470727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nongenomic responses to 17beta-estradiol in male rat mesenteric arteries abolish intrinsic gender differences in vascular responses.
    Keung W; Vanhoutte PM; Man RY
    Br J Pharmacol; 2005 Dec; 146(8):1148-55. PubMed ID: 16231002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endothelium-independent relaxation to raloxifene in porcine coronary artery.
    Leung HS; Seto SW; Kwan YW; Leung FP; Au AL; Yung LM; Yao X; Huang Y
    Eur J Pharmacol; 2007 Jan; 555(2-3):178-84. PubMed ID: 17113071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological studies on the inhibitory action of melatonin and putative melatonin analogues on porcine vascular smooth muscle.
    Ting N; Thambyraja A; Sugden D; Scalbert E; Delagrange P; Wilson VG
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Mar; 361(3):327-33. PubMed ID: 10731047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dehydroepiandrosterone sulfate induces acute vasodilation of porcine coronary arteries in vitro and in vivo.
    Hutchison SJ; Browne AE; Ko E; Chou TM; Zellner C; Komesaroff PA; Chatterjee K; Sudhir K
    J Cardiovasc Pharmacol; 2005 Sep; 46(3):325-32. PubMed ID: 16116338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.