These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 107288)
61. Properties of cutaneous touch receptors in cat. HUNT CC; McINTYRE AK J Physiol; 1960 Aug; 153(1):88-98. PubMed ID: 13716840 [No Abstract] [Full Text] [Related]
62. [On the control of leaping in the migratory locust Schistocerca gregarica]. Bässler Kybernetik; 1968 Jan; 4(3):112. PubMed ID: 5658772 [No Abstract] [Full Text] [Related]
63. Everybody Knows That the Dice Are Loaded: How Can We Block the Nerves That Innervate the Knee Joint Without Blocking the Nerves That Innervate That Joint? Boezaart AP; Parvataneni HK Reg Anesth Pain Med; 2016; 41(6):665-666. PubMed ID: 27776097 [No Abstract] [Full Text] [Related]
64. [Skin as a sense organ. I. Relations between receptors and localization of cutaneous sensibility]. ORMEA F Minerva Dermatol; 1956 Nov; 31(11):323-6. PubMed ID: 13387100 [No Abstract] [Full Text] [Related]
65. [Studies on the effect of muscle proprioceptivity on the voluntary movement]. Hopf HC; Handwerker H; Hausmans J; Polzien F Klin Wochenschr; 1966 Jul; 44(13):789. PubMed ID: 5992805 [No Abstract] [Full Text] [Related]
67. A reassessment of the role of joint receptors in human position sense. Proske U Exp Brain Res; 2023 Apr; 241(4):943-949. PubMed ID: 36869268 [TBL] [Abstract][Full Text] [Related]
68. Perception of gait motion during multiple lower-limb vibrations in young healthy individuals: a pilot study. Tapin A; Duclos NC; Jamal K; Duclos C Exp Brain Res; 2021 Nov; 239(11):3267-3276. PubMed ID: 34463827 [TBL] [Abstract][Full Text] [Related]
70. Quantification of upper limb position sense using an exoskeleton and a virtual reality display. Deblock-Bellamy A; Batcho CS; Mercier C; Blanchette AK J Neuroeng Rehabil; 2018 Mar; 15(1):24. PubMed ID: 29548326 [TBL] [Abstract][Full Text] [Related]
71. Patellar movement perception related to a backward-leaning standing position. Asai H; Odashiro Y; Inaoka PT J Phys Ther Sci; 2017 Aug; 29(8):1372-1376. PubMed ID: 28878465 [TBL] [Abstract][Full Text] [Related]
72. Error signals driving locomotor adaptation: cutaneous feedback from the foot is used to adapt movement during perturbed walking. Choi JT; Jensen P; Nielsen JB; Bouyer LJ J Physiol; 2016 Oct; 594(19):5673-84. PubMed ID: 27218896 [TBL] [Abstract][Full Text] [Related]
73. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales. Boker SM J Pers Oriented Res; 2015 Mar; 1(1-2):99-109. PubMed ID: 27066197 [TBL] [Abstract][Full Text] [Related]
74. Baseline skin information from the foot dorsum is used to control lower limb kinematics during level walking. Howe EE; Toth AJ; Vallis LA; Bent LR Exp Brain Res; 2015 Aug; 233(8):2477-87. PubMed ID: 26019009 [TBL] [Abstract][Full Text] [Related]
75. Decoding of the spike timing of primary afferents during voluntary arm movements in monkeys. Umeda T; Watanabe H; Sato MA; Kawato M; Isa T; Nishimura Y Front Neurosci; 2014; 8():97. PubMed ID: 24860416 [TBL] [Abstract][Full Text] [Related]
76. The basic science of human knee menisci: structure, composition, and function. Fox AJ; Bedi A; Rodeo SA Sports Health; 2012 Jul; 4(4):340-51. PubMed ID: 23016106 [TBL] [Abstract][Full Text] [Related]
77. Where is your arm? Variations in proprioception across space and tasks. Fuentes CT; Bastian AJ J Neurophysiol; 2010 Jan; 103(1):164-71. PubMed ID: 19864441 [TBL] [Abstract][Full Text] [Related]