BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

736 related articles for article (PubMed ID: 10728979)

  • 21. Limitations in the intraoral demineralization of bovine enamel.
    Kashket S; Yaskell T
    Caries Res; 1992; 26(2):98-103. PubMed ID: 1521313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis.
    Kleinberg I
    Crit Rev Oral Biol Med; 2002; 13(2):108-25. PubMed ID: 12097354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the caries-related risk associated with infant formulas.
    Erickson PR; McClintock KL; Green N; LaFleur J
    Pediatr Dent; 1998; 20(7):395-403. PubMed ID: 9866143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship among microbiological composition and presence of dental plaque, sugar exposure, social factors and different stages of early childhood caries.
    Parisotto TM; Steiner-Oliveira C; Duque C; Peres RC; Rodrigues LK; Nobre-dos-Santos M
    Arch Oral Biol; 2010 May; 55(5):365-73. PubMed ID: 20381791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque and caries experience.
    Shimotoyodome A; Kobayashi H; Tokimitsu I; Hase T; Inoue T; Matsukubo T; Takaesu Y
    Caries Res; 2007; 41(3):212-8. PubMed ID: 17426402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals.
    Nyvad B; Kilian M
    Caries Res; 1990; 24(4):267-72. PubMed ID: 2276164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status.
    Richards VP; Alvarez AJ; Luce AR; Bedenbaugh M; Mitchell ML; Burne RA; Nascimento MM
    Infect Immun; 2017 Aug; 85(8):. PubMed ID: 28507066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supplementation of domestic sugar (sucrose) with fluoride. Effects on experimental dental caries, plaque pH, and fluoride levels in plaque and enamel.
    Pearce EI; Cutress TW; Sissons CH; Coote GE
    N Z Dent J; 1992 Jul; 88(393):84-8. PubMed ID: 1508441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship among dental plaque composition, daily sugar exposure and caries in the primary dentition.
    Nobre dos Santos M; Melo dos Santos L; Francisco SB; Cury JA
    Caries Res; 2002; 36(5):347-52. PubMed ID: 12399695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Remineralization of enamel caries. Application in preventive programs for high-risk patients].
    Bordoni N
    Salud Bucal; 1983; 10(57):22-3, 26-7, 30-5. PubMed ID: 6374862
    [No Abstract]   [Full Text] [Related]  

  • 31. The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans.
    Zero DT; van Houte J; Russo J
    J Dent Res; 1986 Jun; 65(6):918-23. PubMed ID: 3458743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors affecting the resting pH of in vitro human microcosm dental plaque and Streptococcus mutans biofilms.
    Sissons CH; Wong L; Shu M
    Arch Oral Biol; 1998 Feb; 43(2):93-102. PubMed ID: 9602287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theoretical analysis of the effects of plaque thickness and initial salivary sucrose concentration on diffusion of sucrose into dental plaque and its conversion to acid during salivary clearance.
    Dawes C; Dibdin GH
    J Dent Res; 1986 Feb; 65(2):89-94. PubMed ID: 3455974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association of the microbial flora of dental plaque and saliva with human root-surface caries.
    Van Houte J; Jordan HV; Laraway R; Kent R; Soparkar PM; DePaola PF
    J Dent Res; 1990 Aug; 69(8):1463-8. PubMed ID: 2384622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Food starches and dental caries.
    Lingström P; van Houte J; Kashket S
    Crit Rev Oral Biol Med; 2000; 11(3):366-80. PubMed ID: 11021636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of S mutans and A naeslundii acid production in vitro with caries incidence of low- and high-risk children.
    Kneist S; Kubieziel H; Willershausen B; Küpper H; Callaway A
    Quintessence Int; 2012 May; 43(5):413-20. PubMed ID: 22536593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of in vivo human dental plaque pH changes within artificial fissures and at interproximal sites.
    Igarashi K; Lee IK; Schachtele CF
    Caries Res; 1989; 23(6):417-22. PubMed ID: 2598230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can insoluble polysaccharide concentration in dental plaque, sugar exposure and cariogenic microorganisms predict early childhood caries? A follow-up study.
    Parisotto TM; Stipp R; Rodrigues LK; Mattos-Graner RO; Costa LS; Nobre-Dos-Santos M
    Arch Oral Biol; 2015 Aug; 60(8):1091-7. PubMed ID: 25985037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cariogenic potential of foods. II. Relationship of food composition, plaque microbial counts, and salivary parameters to caries in the rat model.
    Mundorff-Shrestha SA; Featherstone JD; Eisenberg AD; Cowles E; Curzon ME; Espeland MA; Shields CP
    Caries Res; 1994; 28(2):106-15. PubMed ID: 7512447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of an intra-oral model to evaluate 0.05% sodium fluoride mouthrinse in radiation-induced hyposalivation.
    Meyerowitz C; Featherstone JD; Billings RJ; Eisenberg AD; Fu J; Shariati M; Zero DT
    J Dent Res; 1991 May; 70(5):894-8. PubMed ID: 2022771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.