These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10729797)

  • 41. Contractile properties of canine thyroarytenoid muscle reinnervated from the ansa cervicalis.
    Rice DH; Cooper DS
    Ann Otol Rhinol Laryngol; 1989 Feb; 98(2):153-6. PubMed ID: 2916827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve.
    Karbiener M; Jarvis JC; Perkins JD; Lanmüller H; Schmoll M; Rode HS; Gerstenberger C; Gugatschka M
    PLoS One; 2016; 11(11):e0167367. PubMed ID: 27893858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Functional electrostimulation of the denervated posticus muscle in an animal experiment: histo- and biochemical results].
    Zrunek M; Carraro U; Catani C; Scabolcs M; Gruber H; Streinzer W; Mayr W; Thoma H
    Laryngol Rhinol Otol (Stuttg); 1986 Nov; 65(11):621-7. PubMed ID: 3807598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Innervation of the paralyzed laryngeal muscles by phrenic motoneurons. A quantitative study by light and electron microscopy.
    Baldissera F; Tredici G; Marini G; Fiori MG; Cantarella G; Ottaviani F; Zanoni R
    Laryngoscope; 1992 Aug; 102(8):907-16. PubMed ID: 1386642
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Implantable System For Chronic In Vivo Electromyography.
    Zealear D; Li Y; Huang S
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional electrical stimulation of the left recurrent laryngeal nerve using a vagus nerve stimulator in a normal horse.
    Vanschandevijl K; Nollet H; Vonck K; Raedt R; Boon P; Roost D; Martens A; Deprez P
    Vet J; 2011 Sep; 189(3):346-8. PubMed ID: 20724182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics of Intrinsic Laryngeal Muscle Contraction.
    Vahabzadeh-Hagh AM; Pillutla P; Zhang Z; Chhetri DK
    Laryngoscope; 2019 Jan; 129(1):E21-E25. PubMed ID: 30325497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The roles of sex, innervation, and androgen in laryngeal muscle of Xenopus laevis.
    Tobias ML; Marin ML; Kelley DB
    J Neurosci; 1993 Jan; 13(1):324-33. PubMed ID: 8423478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Electrodiagnostic and histochemical studies on the effect of electric stimulation on the atrophy of denervated laryngeal muscles in animal experiments].
    Martin F; Witt TN
    Laryngol Rhinol Otol (Stuttg); 1983 Dec; 62(12):590-6. PubMed ID: 6672500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Occurrence of capillaries with fenestrae in the intrinsic laryngeal muscles of the guinea pig after unilateral denervation.
    Desaki J; Kawakita S; Yamagata T
    J Electron Microsc (Tokyo); 1997; 46(6):491-5. PubMed ID: 9489002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential expression of glial-derived neurotrophic factor in rat laryngeal muscles during reinnervation.
    Hernandez-Morato I; Isseroff TF; Sharma S; Pitman MJ
    Laryngoscope; 2014 Dec; 124(12):2750-6. PubMed ID: 25220603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Laryngeal reinnervation in the dog].
    Capellá G; Ademá JM; Viñas J; Bordes R; Lloveras B
    An Otorrinolaringol Ibero Am; 1989; 16(2):187-214. PubMed ID: 2719197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developmental changes in histochemical properties of intrinsic laryngeal muscles in rats.
    Hangai K; Kobayashi Y; Nonaka S
    Auris Nasus Larynx; 1999 Oct; 26(4):467-78. PubMed ID: 10530744
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A re-appraisal of intrinsic laryngeal muscle action.
    Sellars IE
    J Otolaryngol; 1978 Oct; 7(5):450-6. PubMed ID: 739577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laryngeal pacemaker using a temperature sensor in the canine.
    Kim KM; Choi HS; Kim GR; Hong WP; Chun YM; Park YJ
    Laryngoscope; 1987 Oct; 97(10):1207-10. PubMed ID: 3498866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artificial control of glottic adduction for aspiration by orderly recruitment in the canine.
    Broniatowski M; Vito KJ; Shah B; Shields RW; Strome M
    Dysphagia; 1997; 12(2):93-7. PubMed ID: 9071810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional results after experimental reinnervation of the posterior cricoarytenoid muscle in dogs.
    Brondbo K; Hall C; Teig E; Dahl HA
    J Otolaryngol; 1986 Oct; 15(5):259-64. PubMed ID: 3773041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The plasticity of denervated and reinnervated laryngeal muscle: focus on single-fiber myosin heavy-chain isoform expression.
    Wu YZ; Baker MJ; Marie JP; Crumley R; Caiozzo VJ
    Arch Otolaryngol Head Neck Surg; 2004 Sep; 130(9):1070-82. PubMed ID: 15381594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bilateral motion restored to the paralyzed canine larynx with implantable stimulator.
    Nomura K; Kunibe I; Katada A; Wright CT; Huang S; Choksi Y; Mainthia R; Billante C; Harabuchi Y; Zealear DL
    Laryngoscope; 2010 Dec; 120(12):2399-409. PubMed ID: 21053243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.