BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10730970)

  • 1. Modelling individual temperature profiles from an isolated perfused bovine tongue.
    Raaymakers BW; Crezee J; Lagendijk JJ
    Phys Med Biol; 2000 Mar; 45(3):765-80. PubMed ID: 10730970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of temperature distributions in interstitial hyperthermia: experiments in bovine tongues versus generic simulations.
    Raaymakers BW; Crezee J; Lagendijk JJ
    Phys Med Biol; 1998 May; 43(5):1199-214. PubMed ID: 9623650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial heating: experiments in artificially perfused bovine tongues.
    Crezee J; Mooibroek J; Bos CK; Lagendijk JJ
    Phys Med Biol; 1991 Jun; 36(6):823-33. PubMed ID: 1871212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to apply a discrete vessel model in thermal simulations when only incomplete vessel data are available.
    Raaymakers BW; Kotte AN; Lagendijk JJ
    Phys Med Biol; 2000 Nov; 45(11):3385-401. PubMed ID: 11098912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks.
    Kok HP; van den Berg CA; Bel A; Crezee J
    Med Phys; 2013 Oct; 40(10):103303. PubMed ID: 24089933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma.
    Raaymakers BW; Van Vulpen M; Lagendijk JJ; De Leeuw AA; Crezee J; Battermann JJ
    Phys Med Biol; 2001 Dec; 46(12):3115-31. PubMed ID: 11768495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evaluation of two simple thermal models using transient temperature analysis.
    Kolios MC; Worthington AE; Sherar MD; Hunt JW
    Phys Med Biol; 1998 Nov; 43(11):3325-40. PubMed ID: 9832019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The theoretical and experimental evaluation of the heat balance in perfused tissue.
    Crezee J; Mooibroek J; Lagendijk JJ; van Leeuwen GM
    Phys Med Biol; 1994 May; 39(5):813-32. PubMed ID: 15552087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue.
    Crezee J; Lagendijk JJ
    Phys Med Biol; 1990 Jul; 35(7):905-23. PubMed ID: 2385622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating.
    Kolios MC; Worthington AE; Holdsworth DW; Sherar MD; Hunt JW
    Phys Med Biol; 1999 Jun; 44(6):1479-97. PubMed ID: 10498518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements.
    Craciunescu OI; Raaymakers BW; Kotte AN; Das SK; Samulski TV; Lagendijk JJ
    Med Phys; 2001 Nov; 28(11):2289-96. PubMed ID: 11764035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques.
    van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ
    Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal modelling using discrete vasculature for thermal therapy: A review.
    Kok HP; Gellermann J; van den Berg CA; Stauffer PR; Hand JW; Crezee J
    Int J Hyperthermia; 2013 Jun; 29(4):336-45. PubMed ID: 23738700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning.
    Sumser K; Neufeld E; Verhaart RF; Fortunati V; Verduijn GM; Drizdal T; van Walsum T; Veenland JF; Paulides MM
    Int J Hyperthermia; 2019; 36(1):801-811. PubMed ID: 31450989
    [No Abstract]   [Full Text] [Related]  

  • 16. Modelling the thermal impact of a discrete vessel tree.
    Kotte AN; van Leeuwen GM; Lagendijk JJ
    Phys Med Biol; 1999 Jan; 44(1):57-74. PubMed ID: 10071875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.
    Paul A; Narasimhan A; Kahlen FJ; Das SK
    J Therm Biol; 2014 Apr; 41():77-87. PubMed ID: 24679976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature simulations in tissue with a realistic computer generated vessel network.
    Van Leeuwen GM; Kotte AN; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2000 Apr; 45(4):1035-49. PubMed ID: 10795990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D numerical reconstruction of the hyperthermia induced temperature distribution in human sarcomas using DE-MRI measured tissue perfusion: validation against non-invasive MR temperature measurements.
    Craciunescu OI; Das SK; McCauley RL; MacFall JR; Samulski TV
    Int J Hyperthermia; 2001; 17(3):221-39. PubMed ID: 11347728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.