These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10731020)

  • 1. Vacuolar transport of the glutathione conjugate of trans-cinnamic acid.
    Walczak HA; Dean JV
    Phytochemistry; 2000 Feb; 53(4):441-6. PubMed ID: 10731020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump.
    Li ZS; Alfenito M; Rea PA; Walbot V; Dixon RA
    Phytochemistry; 1997 Jun; 45(4):689-93. PubMed ID: 9195760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump.
    Li ZS; Szczypka M; Lu YP; Thiele DJ; Rea PA
    J Biol Chem; 1996 Mar; 271(11):6509-17. PubMed ID: 8626454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directly energized uptake of beta-estradiol 17-(beta-D-glucuronide) in plant vacuoles is strongly stimulated by glutathione conjugates.
    Klein M; Martinoia E; Weissenböck G
    J Biol Chem; 1998 Jan; 273(1):262-70. PubMed ID: 9417074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates.
    Bartholomew DM; Van Dyk DE; Lau SM; O'Keefe DP; Rea PA; Viitanen PV
    Plant Physiol; 2002 Nov; 130(3):1562-72. PubMed ID: 12428021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana.
    Vaca E; Behrens C; Theccanat T; Choe JY; Dean JV
    Physiol Plant; 2017 Nov; 161(3):322-338. PubMed ID: 28665551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates.
    Klein M; Martinoia E; Hoffmann-Thoma G; Weissenböck G
    Plant J; 2000 Feb; 21(3):289-304. PubMed ID: 10758480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism.
    Dean JV; Mills JD
    Physiol Plant; 2004 Apr; 120(4):603-612. PubMed ID: 15032822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium Adenosine 5[prime]-Triphosphate-Energized Transport of Glutathione-S-Conjugates by Plant Vacuolar Membrane Vesicles.
    Li ZS; Zhao Y; Rea PA
    Plant Physiol; 1995 Apr; 107(4):1257-1268. PubMed ID: 12228432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures.
    Dean JV; Mohammed LA; Fitzpatrick T
    Planta; 2005 May; 221(2):287-96. PubMed ID: 15871031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast.
    Klein M; Mamnun YM; Eggmann T; Schüller C; Wolfger H; Martinoia E; Kuchler K
    FEBS Lett; 2002 Jun; 520(1-3):63-7. PubMed ID: 12044871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct energization of bile acid transport into plant vacuoles.
    Hörtensteiner S; Vogt E; Hagenbuch B; Meier PJ; Amrhein N; Martinoia E
    J Biol Chem; 1993 Sep; 268(25):18446-9. PubMed ID: 8360146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p.
    Lazard M; Ha-Duong NT; Mounié S; Perrin R; Plateau P; Blanquet S
    FEBS J; 2011 Nov; 278(21):4112-21. PubMed ID: 21880115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of lucifer yellow CH into plant vacuoles--evidence for direct energization of a sulphonated substance and implications for the design of new molecular probes.
    Klein M; Martinoia E; Weissenböck G
    FEBS Lett; 1997 Dec; 420(1):86-92. PubMed ID: 9450555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-induced sucrose efflux from red-beet tonoplast vesicles.
    Echeverría E; Gonzalez PC
    Planta; 2000 Jun; 211(1):77-84. PubMed ID: 10923706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of amphipathic anions by human multidrug resistance protein 3.
    Zeng H; Liu G; Rea PA; Kruh GD
    Cancer Res; 2000 Sep; 60(17):4779-84. PubMed ID: 10987286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple canalicular transport mechanisms for glutathione S-conjugates. Transport on both ATP- and voltage-dependent carriers.
    Ballatori N; Truong AT
    J Biol Chem; 1995 Feb; 270(8):3594-601. PubMed ID: 7876095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins.
    Rebbeor JF; Connolly GC; Dumont ME; Ballatori N
    J Biol Chem; 1998 Dec; 273(50):33449-54. PubMed ID: 9837923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-dependent transport of lipophilic cytotoxic drugs by membrane vesicles prepared from MRP-overexpressing HL60/ADR cells.
    Paul S; Breuninger LM; Kruh GD
    Biochemistry; 1996 Nov; 35(44):14003-11. PubMed ID: 8909298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.