BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1092 related articles for article (PubMed ID: 10731148)

  • 1. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction.
    Hayashi Y; Shi SH; Esteban JA; Piccini A; Poncer JC; Malinow R
    Science; 2000 Mar; 287(5461):2262-7. PubMed ID: 10731148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons.
    Shi S; Hayashi Y; Esteban JA; Malinow R
    Cell; 2001 May; 105(3):331-43. PubMed ID: 11348590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II.
    Poncer JC; Esteban JA; Malinow R
    J Neurosci; 2002 Jun; 22(11):4406-11. PubMed ID: 12040047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two mutations preventing PDZ-protein interactions of GluR1 have opposite effects on synaptic plasticity.
    Boehm J; Ehrlich I; Hsieh H; Malinow R
    Learn Mem; 2006; 13(5):562-5. PubMed ID: 16980545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice.
    Andrásfalvy BK; Smith MA; Borchardt T; Sprengel R; Magee JC
    J Physiol; 2003 Oct; 552(Pt 1):35-45. PubMed ID: 12878757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPA receptor phosphorylation during synaptic plasticity.
    Boehm J; Malinow R
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1354-6. PubMed ID: 16246117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors.
    Liao D; Scannevin RH; Huganir R
    J Neurosci; 2001 Aug; 21(16):6008-17. PubMed ID: 11487624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation.
    Barria A; Muller D; Derkach V; Griffith LC; Soderling TR
    Science; 1997 Jun; 276(5321):2042-5. PubMed ID: 9197267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience strengthening transmission by driving AMPA receptors into synapses.
    Takahashi T; Svoboda K; Malinow R
    Science; 2003 Mar; 299(5612):1585-8. PubMed ID: 12624270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term potentiation in cultured hippocampal neurons.
    Molnár E
    Semin Cell Dev Biol; 2011 Jul; 22(5):506-13. PubMed ID: 21807105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice.
    Mack V; Burnashev N; Kaiser KM; Rozov A; Jensen V; Hvalby O; Seeburg PH; Sakmann B; Sprengel R
    Science; 2001 Jun; 292(5526):2501-4. PubMed ID: 11431570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domoic acid induces a long-lasting enhancement of CA1 field responses and impairs tetanus-induced long-term potentiation in rat hippocampal slices.
    Qiu S; Jebelli AK; Ashe JH; Currás-Collazo MC
    Toxicol Sci; 2009 Sep; 111(1):140-50. PubMed ID: 19564213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons.
    Pettit DL; Perlman S; Malinow R
    Science; 1994 Dec; 266(5192):1881-5. PubMed ID: 7997883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity.
    Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH
    Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation.
    Shi SH; Hayashi Y; Petralia RS; Zaman SH; Wenthold RJ; Svoboda K; Malinow R
    Science; 1999 Jun; 284(5421):1811-6. PubMed ID: 10364548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.