BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10731227)

  • 1. Orbital and medial prefrontal cortex and psychostimulant abuse: studies in animal models.
    Porrino LJ; Lyons D
    Cereb Cortex; 2000 Mar; 10(3):326-33. PubMed ID: 10731227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure.
    DePoy LM; Gourley SL
    Traffic; 2015 Sep; 16(9):919-40. PubMed ID: 25951902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits.
    Bisagno V; González B; Urbano FJ
    Pharmacol Res; 2016 Jul; 109():108-18. PubMed ID: 26826399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: implications for mental disorders and psychotropic drug action.
    Jentsch JD; Roth RH; Taylor JR
    Prog Brain Res; 2000; 126():433-53. PubMed ID: 11105661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single cocaine exposure disrupts actin dynamics in the cortico-accumbal pathway of adolescent rats: modulation by a second cocaine injection.
    Caffino L; Giannotti G; Racagni G; Fumagalli F
    Psychopharmacology (Berl); 2017 Apr; 234(8):1217-1222. PubMed ID: 28204841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The orbital prefrontal cortex and drug addiction in laboratory animals and humans.
    Everitt BJ; Hutcheson DM; Ersche KD; Pelloux Y; Dalley JW; Robbins TW
    Ann N Y Acad Sci; 2007 Dec; 1121():576-97. PubMed ID: 17846151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review. Parallel studies of cocaine-related neural and cognitive impairment in humans and monkeys.
    Beveridge TJ; Gill KE; Hanlon CA; Porrino LJ
    Philos Trans R Soc Lond B Biol Sci; 2008 Oct; 363(1507):3257-66. PubMed ID: 18640916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction.
    Watt MJ; Weber MA; Davies SR; Forster GL
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Oct; 79(Pt B):136-154. PubMed ID: 28642080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brief social defeat stress: long lasting effects on cocaine taking during a binge and zif268 mRNA expression in the amygdala and prefrontal cortex.
    Covington HE; Kikusui T; Goodhue J; Nikulina EM; Hammer RP; Miczek KA
    Neuropsychopharmacology; 2005 Feb; 30(2):310-21. PubMed ID: 15496936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbitofrontal cortex and human drug abuse: functional imaging.
    London ED; Ernst M; Grant S; Bonson K; Weinstein A
    Cereb Cortex; 2000 Mar; 10(3):334-42. PubMed ID: 10731228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended exposure to sugar and/or caffeine produces distinct behavioral and neurochemical profiles in the orbitofrontal cortex of rats: Implications for neural function.
    Franklin JL; Mirzaei M; Wearne TA; Homewood J; Goodchild AK; Haynes PA; Cornish JL
    Proteomics; 2016 Nov; 16(22):2894-2910. PubMed ID: 27588558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala.
    Pleil KE; Lowery-Gionta EG; Crowley NA; Li C; Marcinkiewcz CA; Rose JH; McCall NM; Maldonado-Devincci AM; Morrow AL; Jones SR; Kash TL
    Neuropharmacology; 2015 Dec; 99():735-49. PubMed ID: 26188147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical substrates of cue-reactivity in multiple substance dependent populations: transdiagnostic relevance of the medial prefrontal cortex.
    Hanlon CA; Dowdle LT; Gibson NB; Li X; Hamilton S; Canterberry M; Hoffman M
    Transl Psychiatry; 2018 Sep; 8(1):186. PubMed ID: 30194288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prefrontal cortex plasticity mechanisms in drug seeking and relapse.
    Van den Oever MC; Spijker S; Smit AB; De Vries TJ
    Neurosci Biobehav Rev; 2010 Nov; 35(2):276-84. PubMed ID: 19932711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use.
    Harlé KM; Stewart JL; Zhang S; Tapert SF; Yu AJ; Paulus MP
    Brain; 2015 Nov; 138(Pt 11):3413-26. PubMed ID: 26336910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug abuse as a problem of impaired control: current approaches and findings.
    Fillmore MT
    Behav Cogn Neurosci Rev; 2003 Sep; 2(3):179-97. PubMed ID: 15006292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of serotonin in drug use and addiction.
    Müller CP; Homberg JR
    Behav Brain Res; 2015 Jan; 277():146-92. PubMed ID: 24769172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the prelimbic cortex in the acquisition, re-acquisition or persistence of responding for a drug-paired conditioned reinforcer.
    Di Ciano P; Benham-Hermetz J; Fogg AP; Osborne GE
    Neuroscience; 2007 Dec; 150(2):291-8. PubMed ID: 17942235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals.
    Tanabe J; Tregellas JR; Dalwani M; Thompson L; Owens E; Crowley T; Banich M
    Biol Psychiatry; 2009 Jan; 65(2):160-4. PubMed ID: 18801475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs.
    Cunha-Oliveira T; Rego AC; Oliveira CR
    Brain Res Rev; 2008 Jun; 58(1):192-208. PubMed ID: 18440072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.