These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 10732194)

  • 1. [Choice of plant light status for space greenhouse: results of ground-based experience].
    Berkovich IuA
    Aviakosm Ekolog Med; 2000; 34(1):38-44. PubMed ID: 10732194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses.
    Avercheva OV; Berkovich YA; Konovalova IO; Radchenko SG; Lapach SN; Bassarskaya EM; Kochetova GV; Zhigalova TV; Yakovleva OS; Tarakanov IG
    Life Sci Space Res (Amst); 2016 Nov; 11():29-42. PubMed ID: 27993191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of characteristics of a salad space greenhouse with a diode lighting unit].
    Erokhin AN; Berkovich IuA
    Aviakosm Ekolog Med; 2005; 39(1):36-43. PubMed ID: 15909845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The components of crop productivity: measuring and modeling plant metabolism.
    Bugbee B
    ASGSB Bull; 1995 Oct; 8(2):93-104. PubMed ID: 11538555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first "space" vegetables have been grown in the "SVET" greenhouse by means of controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Microgravity Q; 1992 Apr; 2(2):109-14. PubMed ID: 11541047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of super dwarf wheat growth and development in greenhouse "Svet" during cultivation in inhabited pressurized chamber].
    Sychev VN; Levinskikh MA; Podol'skiĭ IG; Ivanova IE; Nefedova EL; Livanskaia OG; Derendiaeva TA; Mikhaĭlov NI; Salisbury FB; Bingham GE; Brown S
    Aviakosm Ekolog Med; 1998; 32(2):43-8. PubMed ID: 9661775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracanopy lighting reduces electrical energy utilization by closed cowpea stands.
    Frantz JM; Joly RJ; Mitchell CA
    Life Support Biosph Sci; 2001; 7(4):283-90. PubMed ID: 11676456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light, plants, and power for life support on Mars.
    Salisbury FB; Dempster WF; Allen JP; Alling A; Bubenheim D; Nelson M; Silverstone S
    Life Support Biosph Sci; 2002; 8(3-4):161-72. PubMed ID: 12481808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffuse light and wheat radiation-use efficiency in a controlled environment.
    Tubiello F; Volk T; Bugbee B
    Life Support Biosph Sci; 1997; 4(1-2):77-85. PubMed ID: 11540456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Growth and development of plants in a sequence of generations under the conditions of space flight (experiment Greenhouse-3)].
    Levinskikh MA; Sychev VN; Signalova OB; Derendiaeva TA; Podol'skiĭ IG; Masgreĭv ME; Bingheim GE
    Aviakosm Ekolog Med; 2001; 35(3):43-8. PubMed ID: 11589157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LED lighting optimization as applied to a vitamin space plant growth facility.
    Berkovich YA; Konovalova IO; Erokhin AN; Smolyanina SO; Smolyanin VG; Yakovleva OS; Tarakanov IG; Ivanov TM
    Life Sci Space Res (Amst); 2019 Feb; 20():93-100. PubMed ID: 30797438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prototype of space vitamin greenhouse "Phytoconveyor"].
    Berkovich IuA; Erokhin AN; Krivobok NM; Smolianina SO; Baranov AV; Shanturin NA; Droniaev VP; Radostin AV; Trofimov IuV; Sivenkov VK
    Aviakosm Ekolog Med; 2007; 41(1):51-5. PubMed ID: 18672522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Greenhouse with a convex spherical planting surface as a prototype of space greenhouse and an instrument for studying the plant gravitropism].
    Berkovich IuA; Ziablova NV; Erokhin AN; Smolianina SO; Krivobok NM
    Aviakosm Ekolog Med; 2007; 41(4):54-9. PubMed ID: 18035715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Project of conveyer-type space greenhouse for cosmonauts' supply with vitamin greenery.
    Berkovich YuA ; Krivobok NM; Sinyak YuE
    Adv Space Res; 1998; 22(10):1401-5. PubMed ID: 11542599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.
    Salisbury FB
    Physiologist; 1984; 27(6 Suppl):S31-4. PubMed ID: 11539010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of productivity of different vitamin green technologies under the space station conditions].
    Levinskikh MA
    Aviakosm Ekolog Med; 2002; 36(2):23-5. PubMed ID: 12098946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Growth of wheat from seed-to-seed in space flight].
    Levinskikh MA; Sychev VN; Derendiaeva TA; Signalova OB; Podol'skiĭ IG; Padalka GI; Avdeev SV; Bingham GE
    Aviakosm Ekolog Med; 2000; 34(4):44-9. PubMed ID: 11186585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ground-based comparison of nutrient delivery technologies originally developed for growing plants in the spaceflight environment.
    Porterfield DM; Dreschel TW; Musgrave ME
    Horttechnology; 2000; 10(1):179-85. PubMed ID: 17654790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments].
    Levinskikh MA; Veselova TD; Il'ina GM; Dzhalilova KhKh; Sychev VN; Derendiaeva TA; Salisbury F; Cambell W; Bubenheim D
    Aviakosm Ekolog Med; 1998; 32(4):37-43. PubMed ID: 9858986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carbon dioxide level and plant density on cowpea canopy productivity for a bioregenerative life support system.
    Ohler TA; Mitchell CA
    Life Support Biosph Sci; 1995; 2(1):3-9. PubMed ID: 11538571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.