BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 10733565)

  • 1. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II.
    Price DH
    Mol Cell Biol; 2000 Apr; 20(8):2629-34. PubMed ID: 10733565
    [No Abstract]   [Full Text] [Related]  

  • 2. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate.
    Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T
    J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter.
    Fong YW; Zhou Q
    Mol Cell Biol; 2000 Aug; 20(16):5897-907. PubMed ID: 10913173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA.
    Garber ME; Wei P; Jones KA
    Cold Spring Harb Symp Quant Biol; 1998; 63():371-80. PubMed ID: 10384302
    [No Abstract]   [Full Text] [Related]  

  • 5. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation.
    Ping YH; Rana TM
    J Biol Chem; 2001 Apr; 276(16):12951-8. PubMed ID: 11112772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domains in the SPT5 protein that modulate its transcriptional regulatory properties.
    Ivanov D; Kwak YT; Guo J; Gaynor RB
    Mol Cell Biol; 2000 May; 20(9):2970-83. PubMed ID: 10757782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages.
    Zhou Q; Chen D; Pierstorff E; Luo K
    EMBO J; 1998 Jul; 17(13):3681-91. PubMed ID: 9649438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes.
    Ping YH; Rana TM
    J Biol Chem; 1999 Mar; 274(11):7399-404. PubMed ID: 10066804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb.
    Yik JH; Chen R; Pezda AC; Samford CS; Zhou Q
    Mol Cell Biol; 2004 Jun; 24(12):5094-105. PubMed ID: 15169877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat.
    Fujinaga K; Cujec TP; Peng J; Garriga J; Price DH; GraƱa X; Peterlin BM
    J Virol; 1998 Sep; 72(9):7154-9. PubMed ID: 9696809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription.
    O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q
    J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes.
    Taube R; Lin X; Irwin D; Fujinaga K; Peterlin BM
    Mol Cell Biol; 2002 Jan; 22(1):321-31. PubMed ID: 11739744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription.
    Young TM; Wang Q; Pe'ery T; Mathews MB
    Mol Cell Biol; 2003 Sep; 23(18):6373-84. PubMed ID: 12944466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II.
    Barboric M; Nissen RM; Kanazawa S; Jabrane-Ferrat N; Peterlin BM
    Mol Cell; 2001 Aug; 8(2):327-37. PubMed ID: 11545735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tat, Tat-associated kinase, and transcription.
    Jeang KT
    J Biomed Sci; 1998; 5(1):24-7. PubMed ID: 9570510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences.
    Bourgeois CF; Kim YK; Churcher MJ; West MJ; Karn J
    Mol Cell Biol; 2002 Feb; 22(4):1079-93. PubMed ID: 11809800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
    Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H
    EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo.
    Chao SH; Price DH
    J Biol Chem; 2001 Aug; 276(34):31793-9. PubMed ID: 11431468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase.
    Kim JB; Sharp PA
    J Biol Chem; 2001 Apr; 276(15):12317-23. PubMed ID: 11145967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription.
    Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A
    J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.