BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 10733962)

  • 1. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine.
    Murayama T; Kurebayashi N; Ogawa Y
    Biophys J; 2000 Apr; 78(4):1810-24. PubMed ID: 10733962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides.
    Pessah IN; Stambuk RA; Casida JE
    Mol Pharmacol; 1987 Mar; 31(3):232-8. PubMed ID: 2436032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-induced calcium release in skeletal muscle.
    Endo M
    Physiol Rev; 2009 Oct; 89(4):1153-76. PubMed ID: 19789379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels.
    Bidasee KR; Maxwell A; Reynolds WF; Patel V; Besch HR
    J Pharmacol Exp Ther; 2000 Jun; 293(3):1074-83. PubMed ID: 10869412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation by polyols of the two ryanodine receptor isoforms of frog skeletal muscle.
    Murayama T; Kurebayashi N; Ogawa Y
    J Muscle Res Cell Motil; 1998 Jan; 19(1):15-24. PubMed ID: 9477373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectively suppressed Ca2+-induced Ca2+ release activity of alpha-ryanodine receptor (alpha-RyR) in frog skeletal muscle sarcoplasmic reticulum: potential distinct modes in Ca2+ release between alpha- and beta-RyR.
    Murayama T; Ogawa Y
    J Biol Chem; 2001 Jan; 276(4):2953-60. PubMed ID: 11054412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes.
    Murayama T; Kurebayashi N
    Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RyR1 exhibits lower gain of CICR activity than RyR3 in the SR: evidence for selective stabilization of RyR1 channel.
    Murayama T; Ogawa Y
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C36-45. PubMed ID: 14985235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a 97-kDa mastoparan-binding protein involving in Ca(2+) release from skeletal muscle sarcoplasmic reticulum.
    Hirata Y; Nakahata N; Ohizumi Y
    Mol Pharmacol; 2000 Jun; 57(6):1235-42. PubMed ID: 10825395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cytoplasmic and luminal pH on Ca(2+) release channels from rabbit skeletal muscle.
    Laver DR; Eager KR; Taoube L; Lamb GD
    Biophys J; 2000 Apr; 78(4):1835-51. PubMed ID: 10733964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.
    Hohenegger M; Suko J; Gscheidlinger R; Drobny H; Zidar A
    Biochem J; 2002 Oct; 367(Pt 2):423-31. PubMed ID: 12102654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ryanodine receptor isoforms of non-Mammalian skeletal muscle.
    Ogawa Y; Murayama T; Kurebayashi N
    Front Biosci; 2002 May; 7():d1184-94. PubMed ID: 11991845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia.
    Laver DR; Owen VJ; Junankar PR; Taske NL; Dulhunty AF; Lamb GD
    Biophys J; 1997 Oct; 73(4):1913-24. PubMed ID: 9336187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic modulation of ryanodine binding to sarcoplasmic reticulum vesicles of skeletal muscle by Zn2+ ions.
    Xia RH; Cheng XY; Wang H; Chen KY; Wei QQ; Zhang XH; Zhu PH
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):279-86. PubMed ID: 10620505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs.
    Hohenegger M; Matyash M; Poussu K; Herrmann-Frank A; Sarközi S; Lehmann-Horn F; Freissmuth M
    Mol Pharmacol; 1996 Dec; 50(6):1443-53. PubMed ID: 8967964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of luminal calcium on Ca2+ release channel activity of sarcoplasmic reticulum in situ.
    Kurebayashi N; Ogawa Y
    Biophys J; 1998 Apr; 74(4):1795-807. PubMed ID: 9545042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eugenol-induced contractions of saponin-skinned fibers are inhibited by heparin or by a ryanodine receptor blocker.
    Lofrano-Alves MS; Oliveira EL; Damiani CE; Kassouf-Silva I; Fogaça RT
    Can J Physiol Pharmacol; 2005 Dec; 83(12):1093-100. PubMed ID: 16462908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.