These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 10734094)
1. Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. Brino L; Urzhumtsev A; Mousli M; Bronner C; Mitschler A; Oudet P; Moras D J Biol Chem; 2000 Mar; 275(13):9468-75. PubMed ID: 10734094 [TBL] [Abstract][Full Text] [Related]
2. Isoleucine 10 is essential for DNA gyrase B function in Escherichia coli. Brino L; Bronner C; Oudet P; Mousli M Biochimie; 1999 Oct; 81(10):973-80. PubMed ID: 10575351 [TBL] [Abstract][Full Text] [Related]
3. Expression in Escherichia coli of Y5 mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance. Brino L; Mousli M; Oudet P; Weiss E Plasmid; 1998; 39(1):21-34. PubMed ID: 9473443 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions. O'Dea MH; Tamura JK; Gellert M J Biol Chem; 1996 Apr; 271(16):9723-9. PubMed ID: 8621650 [TBL] [Abstract][Full Text] [Related]
5. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance. Gross CH; Parsons JD; Grossman TH; Charifson PS; Bellon S; Jernee J; Dwyer M; Chambers SP; Markland W; Botfield M; Raybuck SA Antimicrob Agents Chemother; 2003 Mar; 47(3):1037-46. PubMed ID: 12604539 [TBL] [Abstract][Full Text] [Related]
6. Identification of a residue involved in transition-state stabilization in the ATPase reaction of DNA gyrase. Smith CV; Maxwell A Biochemistry; 1998 Jul; 37(27):9658-67. PubMed ID: 9657678 [TBL] [Abstract][Full Text] [Related]
7. Expression in Escherichia coli of Y5-mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance. Brino L; Mousli M; Oudet P; Weiss E Plasmid; 1997; 38(3):188-201. PubMed ID: 9435021 [TBL] [Abstract][Full Text] [Related]
8. Exploiting nucleotide thiophosphates to probe mechanistic aspects of Escherichia coli DNA gyrase. Cullis PM; Maxwell A; Weiner DP Biochemistry; 1997 May; 36(20):6059-68. PubMed ID: 9166776 [TBL] [Abstract][Full Text] [Related]
9. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121 [TBL] [Abstract][Full Text] [Related]
10. Identifying the catalytic residue of the ATPase reaction of DNA gyrase. Jackson AP; Maxwell A Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11232-6. PubMed ID: 8248233 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Bellon S; Parsons JD; Wei Y; Hayakawa K; Swenson LL; Charifson PS; Lippke JA; Aldape R; Gross CH Antimicrob Agents Chemother; 2004 May; 48(5):1856-64. PubMed ID: 15105144 [TBL] [Abstract][Full Text] [Related]
12. gyrB-225, a mutation of DNA gyrase that compensates for topoisomerase I deficiency: investigation of its low activity and quinolone hypersensitivity. Heddle JG; Lu T; Zhao X; Drlica K; Maxwell A J Mol Biol; 2001 Jun; 309(5):1219-31. PubMed ID: 11399091 [TBL] [Abstract][Full Text] [Related]
13. Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion. Agrawal A; Roué M; Spitzfaden C; Petrella S; Aubry A; Hann M; Bax B; Mayer C Biochem J; 2013 Dec; 456(2):263-73. PubMed ID: 24015710 [TBL] [Abstract][Full Text] [Related]
14. The interaction of DNA gyrase with the bacterial toxin CcdB: evidence for the existence of two gyrase-CcdB complexes. Kampranis SC; Howells AJ; Maxwell A J Mol Biol; 1999 Oct; 293(3):733-44. PubMed ID: 10543963 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide binding to the 43-kilodalton N-terminal fragment of the DNA gyrase B protein. Ali JA; Orphanides G; Maxwell A Biochemistry; 1995 Aug; 34(30):9801-8. PubMed ID: 7626649 [TBL] [Abstract][Full Text] [Related]
16. Conformational changes in DNA gyrase revealed by limited proteolysis. Kampranis SC; Maxwell A J Biol Chem; 1998 Aug; 273(35):22606-14. PubMed ID: 9712889 [TBL] [Abstract][Full Text] [Related]
17. Structure of the N-terminal Gyrase B fragment in complex with ADP⋅Pi reveals rigid-body motion induced by ATP hydrolysis. Stanger FV; Dehio C; Schirmer T PLoS One; 2014; 9(9):e107289. PubMed ID: 25202966 [TBL] [Abstract][Full Text] [Related]
18. Slow interaction of 5'-adenylyl-beta,gamma-imidodiphosphate with Escherichia coli DNA gyrase. Evidence for cooperativity in nucleotide binding. Tamura JK; Bates AD; Gellert M J Biol Chem; 1992 May; 267(13):9214-22. PubMed ID: 1315750 [TBL] [Abstract][Full Text] [Related]
19. ATPase domain of eukaryotic DNA topoisomerase II. Inhibition of ATPase activity by the anti-cancer drug bisdioxopiperazine and ATP/ADP-induced dimerization. Hu T; Sage H; Hsieh TS J Biol Chem; 2002 Feb; 277(8):5944-51. PubMed ID: 11850431 [TBL] [Abstract][Full Text] [Related]
20. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide. Hsieh J; Moore KJ; Lohman TM J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]