These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10734120)

  • 1. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate.
    Grunewald M; Kanner BI
    J Biol Chem; 2000 Mar; 275(13):9684-9. PubMed ID: 10734120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter.
    Zhang Y; Kanner BI
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1710-5. PubMed ID: 9990089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1.
    Grunewald M; Menaker D; Kanner BI
    J Biol Chem; 2002 Jul; 277(29):26074-80. PubMed ID: 11994293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology.
    Grunewald M; Bendahan A; Kanner BI
    Neuron; 1998 Sep; 21(3):623-32. PubMed ID: 9768848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop.
    Slotboom DJ; Sobczak I; Konings WN; Lolkema JS
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14282-7. PubMed ID: 10588697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue.
    Zarbiv R; Grunewald M; Kavanaugh MP; Kanner BI
    J Biol Chem; 1998 Jun; 273(23):14231-7. PubMed ID: 9603927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes monitored on the glutamate transporter GLT-1 indicate the existence of two neurotransmitter-bound states.
    Grunewald M; Kanner B
    J Biol Chem; 1995 Jul; 270(28):17017-24. PubMed ID: 7622523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV.
    Zomot E; Kanner BI
    J Biol Chem; 2003 Oct; 278(44):42950-8. PubMed ID: 12925537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation.
    Seal RP; Amara SG
    Neuron; 1998 Dec; 21(6):1487-98. PubMed ID: 9883740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine Scanning Mutagenesis of TM4b-4c Loop of Glutamate Transporter EAAT1 Reveals Three Conformationally Sensitive Residues.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2018 Jul; 94(1):713-721. PubMed ID: 29654220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain.
    Pines G; Zhang Y; Kanner BI
    J Biol Chem; 1995 Jul; 270(29):17093-7. PubMed ID: 7615503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis.
    Brocke L; Bendahan A; Grunewald M; Kanner BI
    J Biol Chem; 2002 Feb; 277(6):3985-92. PubMed ID: 11724778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reactivity of the gamma-aminobutyric acid transporter GAT-1 toward sulfhydryl reagents is conformationally sensitive. Identification of a major target residue.
    Golovanevsky V; Kanner BI
    J Biol Chem; 1999 Aug; 274(33):23020-6. PubMed ID: 10438469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1.
    Shlaifer I; Kanner BI
    Mol Pharmacol; 2007 May; 71(5):1341-8. PubMed ID: 17272682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrates and non-transportable analogues induce structural rearrangements at the extracellular entrance of the glial glutamate transporter GLT-1/EAAT2.
    Qu S; Kanner BI
    J Biol Chem; 2008 Sep; 283(39):26391-400. PubMed ID: 18658151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features of the glutamate transporter family.
    Slotboom DJ; Konings WN; Lolkema JS
    Microbiol Mol Biol Rev; 1999 Jun; 63(2):293-307. PubMed ID: 10357852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complex relative motion between hairpin loop 2 and transmembrane domain 5 in the glutamate transporter GLT-1.
    Rong X; Zhang X; Qu S
    Int J Biochem Cell Biol; 2015 Mar; 60():1-7. PubMed ID: 25562514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions.
    Silverstein N; Crisman TJ; Forrest LR; Kanner BI
    J Biol Chem; 2013 Jan; 288(2):964-73. PubMed ID: 23188832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-Induced Motion between TM4 and TM7 of the Glutamate Transporter EAAT1 Revealed by Paired Cysteine Mutagenesis.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2019 Jan; 95(1):33-42. PubMed ID: 30348896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
    Pajor AM; Randolph KM
    J Biol Chem; 2005 May; 280(19):18728-35. PubMed ID: 15774465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.