These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10734705)

  • 1. Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: an ensemble neural network approach.
    Cannon AJ; Lord ER
    J Air Waste Manag Assoc; 2000 Mar; 50(3):322-39. PubMed ID: 10734705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting.
    Cobourn WG; Dolcine L; French M; Hubbard MC
    J Air Waste Manag Assoc; 2000 Nov; 50(11):1999-2009. PubMed ID: 11111344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network-derived trends in daily maximum surface ozone concentrations.
    Gardner M; Dorling S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1202-10. PubMed ID: 11518294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High density ozone monitoring using gas sensitive semi-conductor sensors in the Lower Fraser Valley, British Columbia.
    Bart M; Williams DE; Ainslie B; McKendry I; Salmond J; Grange SK; Alavi-Shoshtari M; Steyn D; Henshaw GS
    Environ Sci Technol; 2014 Apr; 48(7):3970-7. PubMed ID: 24579930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozone predictions in Atlanta, Georgia: analysis of the 1999 ozone season.
    Cardelino C; Chang M; St John J; Murphey B; Cordle J; Ballagas R; Patterson L; Powell K; Stogner J; Zimmer-Dauphinee S
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1227-36. PubMed ID: 11518297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel bagging ensemble approach for predicting summertime ground-level ozone concentration.
    Mohan S; Saranya P
    J Air Waste Manag Assoc; 2019 Feb; 69(2):220-233. PubMed ID: 30303768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving of local ozone forecasting by integrated models.
    Gradišar D; Grašič B; Božnar MZ; Mlakar P; Kocijan J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18439-50. PubMed ID: 27287489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting air quality time series using deep learning.
    Freeman BS; Taylor G; Gharabaghi B; Thé J
    J Air Waste Manag Assoc; 2018 Aug; 68(8):866-886. PubMed ID: 29652217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of time-resolved light extinction and its applications to visibility management in the Lower Fraser Valley of British Columbia, Canada.
    So R; Vingarzan R; Jones K; Pitchford M
    J Air Waste Manag Assoc; 2015 Jun; 65(6):707-20. PubMed ID: 25976484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia.
    Chang ME; Cardelino C
    J Air Waste Manag Assoc; 2000 Nov; 50(11):2010-24. PubMed ID: 11111345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PM10 levels in the Lower Fraser Valley, British Columbia, Canada: an overview of spatiotemporal variations and meteorological controls.
    McKendry IG
    J Air Waste Manag Assoc; 2000 Mar; 50(3):443-52. PubMed ID: 10734716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens.
    Chaloulakou A; Saisana M; Spyrellis N
    Sci Total Environ; 2003 Sep; 313(1-3):1-13. PubMed ID: 12922056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting peak daily ozone levels: part 2--A regression with time series errors model having a principal component trigger to forecast 1999 and 2002 ozone levels.
    Liu PW; Johnson R
    J Air Waste Manag Assoc; 2003 Dec; 53(12):1472-89. PubMed ID: 14700134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting peak daily ozone levels--I. A regression with time series errors model having a principal component trigger to fit 1991 ozone levels.
    Liu PW; Johnson R
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1064-74. PubMed ID: 12269667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting of daily total atmospheric ozone in Isfahan.
    Yazdanpanah H; Karimi M; Hejazizadeh Z
    Environ Monit Assess; 2009 Oct; 157(1-4):235-41. PubMed ID: 18843548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of synoptic type on surface ozone pollution in Beijing].
    Tang GQ; Li X; Wang XK; Xin JY; Hu B; Wang LL; Ren YF; Wang YS
    Huan Jing Ke Xue; 2010 Mar; 31(3):573-8. PubMed ID: 20358810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of the histogram of hourly ozone distribution from weekly average concentrations.
    Olcese LE; Toselli BM
    Environ Pollut; 2006 May; 141(1):81-9. PubMed ID: 16213071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.