BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10735255)

  • 1. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum polulations, soil microbial communities and soil enzyme activities.
    Naseby DC; Pascual JA; Lynch JM
    J Appl Microbiol; 2000 Jan; 88(1):161-9. PubMed ID: 10735255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non-producing Pseudomonas strains.
    Naseby DC; Way JA; Bainton NJ; Lynch JM
    J Appl Microbiol; 2001 Mar; 90(3):421-9. PubMed ID: 11298238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.
    Brunner K; Zeilinger S; Ciliento R; Woo SL; Lorito M; Kubicek CP; Mach RL
    Appl Environ Microbiol; 2005 Jul; 71(7):3959-65. PubMed ID: 16000810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum.
    Djonović S; Pozo MJ; Kenerley CM
    Appl Environ Microbiol; 2006 Dec; 72(12):7661-70. PubMed ID: 16997978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of municipal waste compost and its humic fraction in suppressing Pythium ultimum.
    Pascual JA; Garcia C; Hernandez T; Lerma S; Lynch JM
    Microb Ecol; 2002 Jul; 44(1):59-68. PubMed ID: 12187376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms.
    Bainton NJ; Lynch JM; Naseby D; Way JA
    Microb Ecol; 2004 Oct; 48(3):349-57. PubMed ID: 15692855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Growth Promotion and Biocontrol of
    Sánchez-Montesinos B; Diánez F; Moreno-Gavira A; Gea FJ; Santos M
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31185653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12.
    Ryder LS; Harris BD; Soanes DM; Kershaw MJ; Talbot NJ; Thornton CR
    Microbiology (Reading); 2012 Jan; 158(Pt 1):84-97. PubMed ID: 21835878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the mycoparasitism in rhizosphere of emerging sugar-beet.
    Veselý D
    Zentralbl Bakteriol Naturwiss; 1978; 133(3):195-200. PubMed ID: 576111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo study of trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems.
    Lu Z; Tombolini R; Woo S; Zeilinger S; Lorito M; Jansson JK
    Appl Environ Microbiol; 2004 May; 70(5):3073-81. PubMed ID: 15128569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots.
    Yuan WM; Crawford DL
    Appl Environ Microbiol; 1995 Aug; 61(8):3119-28. PubMed ID: 7487043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists.
    Georgakopoulos DG; Fiddaman P; Leifert C; Malathrakis NE
    J Appl Microbiol; 2002; 92(6):1078-86. PubMed ID: 12010548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic effects of Trichoderma harzianum on Pythium aphanidermatum causing the damping-off disease of tobacco in Nigeria.
    Fajola AO; Alasoadura SO
    Mycopathologia; 1975 Dec; 57(1):47-52. PubMed ID: 1239662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.
    Khabbaz SE; Abbasi PA
    Can J Microbiol; 2014 Jan; 60(1):25-33. PubMed ID: 24392923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions Between Trichoderma harzianum Strain T22 and Maize Inbred Line Mo17 and Effects of These Interactions on Diseases Caused by Pythium ultimum and Colletotrichum graminicola.
    Harman GE; Petzoldt R; Comis A; Chen J
    Phytopathology; 2004 Feb; 94(2):147-53. PubMed ID: 18943537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).
    Sandheep AR; Asok AK; Jisha MS
    Pak J Biol Sci; 2013 Jun; 16(12):580-4. PubMed ID: 24494528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of G-alpha protein GNA3 in production of cell wall-degrading enzymes by Trichoderma reesei (Hypocrea jecorina) during mycoparasitism against Pythium ultimum.
    do Nascimento Silva R; Steindorff AS; Ulhoa CJ; Félix CR
    Biotechnol Lett; 2009 Apr; 31(4):531-6. PubMed ID: 19116694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber.
    Benhamou N; Garand C; Goulet A
    Appl Environ Microbiol; 2002 Aug; 68(8):4044-60. PubMed ID: 12147506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vitro compatibility assay of indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of faba bean (Vicia faba L.).
    Dugassa A; Alemu T; Woldehawariat Y
    BMC Microbiol; 2021 Apr; 21(1):115. PubMed ID: 33865331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function.
    Liu B; Ji S; Zhang H; Wang Y; Liu Z
    Microbiol Res; 2020 May; 235():126445. PubMed ID: 32113127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.