BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10735866)

  • 1. Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple.
    Pujol CJ; Kado CI
    J Bacteriol; 2000 Apr; 182(8):2230-7. PubMed ID: 10735866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple.
    Cha JS; Pujol C; Kado CI
    Appl Environ Microbiol; 1997 Jan; 63(1):71-6. PubMed ID: 8979341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. gdhB, a gene encoding a second quinoprotein glucose dehydrogenase in Pantoea citrea, is required for pink disease of pineapple.
    Pujol CJ; Kado CI
    Microbiology (Reading); 1999 May; 145 ( Pt 5)():1217-1226. PubMed ID: 10376838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of pUCD5000 involved in pink disease color formation by Pantoea citrea.
    Pujol CJ; Kado CI
    Plasmid; 1998 Sep; 40(2):169-73. PubMed ID: 9735319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of Pantoea citrea, Pantoea punctata and Pantoea terrea to the genus Tatumella emend. as Tatumella citrea comb. nov., Tatumella punctata comb. nov. and Tatumella terrea comb. nov. and description of Tatumella morbirosei sp. nov.
    Brady CL; Venter SN; Cleenwerck I; Vandemeulebroecke K; De Vos P; Coutinho TA
    Int J Syst Evol Microbiol; 2010 Mar; 60(Pt 3):484-494. PubMed ID: 19654354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pantoea punctata sp. nov., Pantoea citrea sp. nov., and Pantoea terrea sp. nov. isolated from fruit and soil samples.
    Kageyama B; Nakae M; Yagi S; Sonoyama T
    Int J Syst Bacteriol; 1992 Apr; 42(2):203-10. PubMed ID: 1581180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli.
    Bausch C; Peekhaus N; Utz C; Blais T; Murray E; Lowary T; Conway T
    J Bacteriol; 1998 Jul; 180(14):3704-10. PubMed ID: 9658018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans.
    Klasen R; Bringer-Meyer S; Sahm H
    J Bacteriol; 1995 May; 177(10):2637-43. PubMed ID: 7751271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The uptake of 2-ketogluconate by Pseudomonas putida.
    Torrontegui D; Díaz R; Cánovas JL
    Arch Microbiol; 1976 Oct; 110(1):43-8. PubMed ID: 1015939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis.
    Andreeva IG; Golubeva LI; Kuvaeva TM; Gak ER; Katashkina JI; Mashko SV
    FEMS Microbiol Lett; 2011 May; 318(1):55-60. PubMed ID: 21306430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.
    Krajewski V; Simic P; Mouncey NJ; Bringer S; Sahm H; Bott M
    Appl Environ Microbiol; 2010 Jul; 76(13):4369-76. PubMed ID: 20453146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the cycHJKL genes involved in cytochrome c biogenesis and symbiotic nitrogen fixation in Rhizobium leguminosarum.
    Delgado MJ; Yeoman KH; Wu G; Vargas C; Davies AE; Poole RK; Johnston AW; Downie JA
    J Bacteriol; 1995 Sep; 177(17):4927-34. PubMed ID: 7665469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1.
    Swanson BL; Hager P; Phibbs P; Ochsner U; Vasil ML; Hamood AN
    Mol Microbiol; 2000 Aug; 37(3):561-73. PubMed ID: 10931350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli.
    Yum DY; Lee YP; Pan JG
    J Bacteriol; 1997 Nov; 179(21):6566-72. PubMed ID: 9352901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants.
    Vicente M; Cánovas JL
    J Bacteriol; 1973 Nov; 116(2):908-14. PubMed ID: 4745434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential levels of specific cytochrome c biogenesis proteins in response to oxygen: analysis of the ccl operon in Rhodobacter capsulatus.
    Gabbert KK; Goldman BS; Kranz RG
    J Bacteriol; 1997 Sep; 179(17):5422-8. PubMed ID: 9286996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis.
    del Castillo T; Ramos JL; Rodríguez-Herva JJ; Fuhrer T; Sauer U; Duque E
    J Bacteriol; 2007 Jul; 189(14):5142-52. PubMed ID: 17483213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the gluconate (gnt) operon of Bacillus subtilis.
    Reizer A; Deutscher J; Saier MH; Reizer J
    Mol Microbiol; 1991 May; 5(5):1081-9. PubMed ID: 1659648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.