BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 10735872)

  • 1. Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin.
    Ray WK; Zeng G; Potters MB; Mansuri AM; Larson TJ
    J Bacteriol; 2000 Apr; 182(8):2277-84. PubMed ID: 10735872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily.
    Spallarossa A; Donahue JL; Larson TJ; Bolognesi M; Bordo D
    Structure; 2001 Nov; 9(11):1117-25. PubMed ID: 11709175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H, 13C and 15N resonance assignments of rhodanese GlpE from Escherichia coli.
    Li H; Xia B; Jin C
    Biomol NMR Assign; 2011 Apr; 5(1):97-9. PubMed ID: 20960079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli.
    Cheng H; Donahue JL; Battle SE; Ray WK; Larson TJ
    Open Microbiol J; 2008; 2():18-28. PubMed ID: 19088907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains.
    Hänzelmann P; Dahl JU; Kuper J; Urban A; Müller-Theissen U; Leimkühler S; Schindelin H
    Protein Sci; 2009 Dec; 18(12):2480-91. PubMed ID: 19798741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystals of GlpE, a 12 kDa sulfurtransferase from escherichia coli, display 1.06 A resolution diffraction: a preliminary report.
    Bordo D; Larson TJ; Donahue JL; Spallarossa A; Bolognesi M
    Acta Crystallogr D Biol Crystallogr; 2000 Dec; 56(Pt 12):1691-3. PubMed ID: 11092948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii.
    Colnaghi R; Pagani S; Kennedy C; Drummond M
    Eur J Biochem; 1996 Feb; 236(1):240-8. PubMed ID: 8617271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins.
    Acosta M; Beard S; Ponce J; Vera M; Mobarec JC; Jerez CA
    OMICS; 2005; 9(1):13-29. PubMed ID: 15805776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "rhodanese" fold and catalytic mechanism of 3-mercaptopyruvate sulfurtransferases: crystal structure of SseA from Escherichia coli.
    Spallarossa A; Forlani F; Carpen A; Armirotti A; Pagani S; Bolognesi M; Bordo D
    J Mol Biol; 2004 Jan; 335(2):583-93. PubMed ID: 14672665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin.
    Libiad M; Motl N; Akey DL; Sakamoto N; Fearon ER; Smith JL; Banerjee R
    J Biol Chem; 2018 Feb; 293(8):2675-2686. PubMed ID: 29348167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced thioredoxin as a sulfur-acceptor substrate for rhodanese.
    Nandi DL; Westley J
    Int J Biochem Cell Biol; 1998 Sep; 30(9):973-7. PubMed ID: 9785461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PspE (phage-shock protein E) of Escherichia coli is a rhodanese.
    Adams H; Teertstra W; Koster M; Tommassen J
    FEBS Lett; 2002 May; 518(1-3):173-6. PubMed ID: 11997041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of an Escherichia coli rhodanese.
    Alexander K; Volini M
    J Biol Chem; 1987 May; 262(14):6595-604. PubMed ID: 3553189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of single-domain thiosulfate sulfurtransferases from Arabidopsis thaliana.
    Bauer M; Papenbrock J
    FEBS Lett; 2002 Dec; 532(3):427-31. PubMed ID: 12482606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus.
    Giuliani MC; Jourlin-Castelli C; Leroy G; Hachani A; Giudici-Orticoni MT
    Biochimie; 2010 Apr; 92(4):388-97. PubMed ID: 20060433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds.
    Ramírez P; Toledo H; Guiliani N; Jerez CA
    Appl Environ Microbiol; 2002 Apr; 68(4):1837-45. PubMed ID: 11916703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unusual tandem-domain rhodanese harbouring two active sites identified in Desulfitobacterium hafniense.
    Prat L; Maillard J; Rohrbach-Brandt E; Holliger C
    FEBS J; 2012 Aug; 279(15):2754-67. PubMed ID: 22686689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-domain rhodanese homologue MnRDH1 helps to maintain redox balance in Macrobrachium nipponense.
    Tang T; Li X; Liu X; Wang Y; Ji C; Wang Y; Wang X; Xie S; Liu F; Wang J
    Dev Comp Immunol; 2018 Jan; 78():160-168. PubMed ID: 28987482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.
    Zeng G; Ye S; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP.
    Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F
    Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.