BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10736166)

  • 1. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila.
    Singh-Wissmann K; Miles RD; Ingram-Smith C; Ferry JG
    Biochemistry; 2000 Apr; 39(13):3671-7. PubMed ID: 10736166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutational analysis of active site residues in the acetate kinase from Methanosarcina thermophila.
    Miles RD; Iyer PP; Ferry JG
    J Biol Chem; 2001 Nov; 276(48):45059-64. PubMed ID: 11562377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila.
    Gorrell A; Lawrence SH; Ferry JG
    J Biol Chem; 2005 Mar; 280(11):10731-42. PubMed ID: 15647264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of essential glutamates in the acetate kinase from Methanosarcina thermophila.
    Singh-Wissmann K; Ingram-Smith C; Miles RD; Ferry JG
    J Bacteriol; 1998 Mar; 180(5):1129-34. PubMed ID: 9495750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase.
    Ingram-Smith C; Gorrell A; Lawrence SH; Iyer P; Smith K; Ferry JG
    J Bacteriol; 2005 Apr; 187(7):2386-94. PubMed ID: 15774882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Methanosarcina thermophila acetate kinase mechanism by fluorescence quenching.
    Gorrell A; Ferry JG
    Biochemistry; 2007 Dec; 46(49):14170-6. PubMed ID: 17999468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila.
    Tripp BC; Ferry JG
    Biochemistry; 2000 Aug; 39(31):9232-40. PubMed ID: 10924116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila.
    Latimer MT; Ferry JG
    J Bacteriol; 1993 Nov; 175(21):6822-9. PubMed ID: 8226623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of arginines in coenzyme A binding and catalysis by the phosphotransacetylase from Methanosarcina thermophila.
    Iyer PP; Ferry JG
    J Bacteriol; 2001 Jul; 183(14):4244-50. PubMed ID: 11418565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
    Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS
    Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of histidines in the acetate kinase from Methanosarcina thermophila.
    Ingram-Smith C; Barber RD; Ferry JG
    J Biol Chem; 2000 Oct; 275(43):33765-70. PubMed ID: 10958794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a transition state analog, MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina thermophila.
    Miles RD; Gorrell A; Ferry JG
    J Biol Chem; 2002 Jun; 277(25):22547-52. PubMed ID: 11960978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila.
    Rasche ME; Smith KS; Ferry JG
    J Bacteriol; 1997 Dec; 179(24):7712-7. PubMed ID: 9401029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of arginine 59 in the gamma-class carbonic anhydrases.
    Tripp BC; Tu C; Ferry JG
    Biochemistry; 2002 Jan; 41(2):669-78. PubMed ID: 11781108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine 91 is not essential for flavin incorporation in hepatic cytochrome b(5) reductase.
    Marohnic CC; Barber MJ
    Arch Biochem Biophys; 2001 May; 389(2):223-33. PubMed ID: 11339812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis.
    Parikh S; Moynihan DP; Xiao G; Tonge PJ
    Biochemistry; 1999 Oct; 38(41):13623-34. PubMed ID: 10521269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues.
    Weinander R; Ekström L; Andersson C; Raza H; Bergman T; Morgenstern R
    J Biol Chem; 1997 Apr; 272(14):8871-7. PubMed ID: 9083005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase.
    Wong SS; Wong LJ
    Biochim Biophys Acta; 1981 Jul; 660(1):142-7. PubMed ID: 6268170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.