BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10736170)

  • 1. Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Apr; 39(13):3708-17. PubMed ID: 10736170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Dec; 39(51):16244-51. PubMed ID: 11123955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Escherichia coli ketopantoate reductase at 1.7 A resolution and insight into the enzyme mechanism.
    Matak-Vinković D; Vinković M; Saldanha SA; Ashurst JL; von Delft F; Inoue T; Miguel RN; Smith AG; Blundell TL; Abell C
    Biochemistry; 2001 Dec; 40(48):14493-500. PubMed ID: 11724562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic and kinetic mechanisms of NADPH-dependent alkenal/one oxidoreductase.
    Dick RA; Kensler TW
    J Biol Chem; 2004 Apr; 279(17):17269-77. PubMed ID: 14966122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.
    Martinelli LK; Ducati RG; Rosado LA; Breda A; Selbach BP; Santos DS; Basso LA
    Mol Biosyst; 2011 Apr; 7(4):1289-305. PubMed ID: 21298178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of Escherichia coli ketopantoate reductase in a ternary complex with NADP+ and pantoate bound: substrate recognition, conformational change, and cooperativity.
    Ciulli A; Chirgadze DY; Smith AG; Blundell TL; Abell C
    J Biol Chem; 2007 Mar; 282(11):8487-97. PubMed ID: 17229734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of Kinetic Cooperativity in Dimeric Ketopantoate Reductase from Staphylococcus aureus.
    Sanchez JE; Gross PG; Goetze RW; Walsh RM; Peeples WB; Wood ZA
    Biochemistry; 2015 Jun; 54(21):3360-3369. PubMed ID: 25946571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pantothenate production in Escherichia coli K12 by enhanced expression of the panE gene encoding ketopantoate reductase.
    Elischewski F; Pühler A; Kalinowski J
    J Biotechnol; 1999 Oct; 75(2-3):135-46. PubMed ID: 10553653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of Escherichia coli ketopantoate reductase with NADP+ bound.
    Lobley CM; Ciulli A; Whitney HM; Williams G; Smith AG; Abell C; Blundell TL
    Biochemistry; 2005 Jun; 44(25):8930-9. PubMed ID: 15966718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters.
    Bhatnagar A; Das B; Liu SQ; Srivastava SK
    Arch Biochem Biophys; 1991 Jun; 287(2):329-36. PubMed ID: 1654814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium.
    Primerano DA; Burns RO
    J Bacteriol; 1983 Jan; 153(1):259-69. PubMed ID: 6401279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes.
    Argyrou A; Blanchard JS
    Biochemistry; 2001 Sep; 40(38):11353-63. PubMed ID: 11560483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; West AH; Cook PF
    Biochemistry; 2009 Aug; 48(30):7305-12. PubMed ID: 19530703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.
    Tomita H; Imanaka T; Atomi H
    Mol Microbiol; 2013 Oct; 90(2):307-21. PubMed ID: 23941541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate.
    Morrison JF; Stone SR
    Biochemistry; 1988 Jul; 27(15):5499-506. PubMed ID: 3052578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.