These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

764 related articles for article (PubMed ID: 10736372)

  • 1. Glutamate as a neurotransmitter in the brain: review of physiology and pathology.
    Meldrum BS
    J Nutr; 2000 Apr; 130(4S Suppl):1007S-15S. PubMed ID: 10736372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.
    Levite M
    J Neural Transm (Vienna); 2014 Aug; 121(8):1029-75. PubMed ID: 25081016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of glutamate in central nervous system health and disease--a review.
    Platt SR
    Vet J; 2007 Mar; 173(2):278-86. PubMed ID: 16376594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis.
    Heath PR; Shaw PJ
    Muscle Nerve; 2002 Oct; 26(4):438-58. PubMed ID: 12362409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitatory amino acid receptors and neurodegeneration.
    Doble A
    Therapie; 1995; 50(4):319-37. PubMed ID: 7482387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of glutamate and excitotoxicity in neurologic diseases].
    Hugon J; Vallat JM; Dumas M
    Rev Neurol (Paris); 1996 Apr; 152(4):239-48. PubMed ID: 8763652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotoxicity of acute glutamate transport blockade depends on coactivation of both NMDA and AMPA/Kainate receptors in organotypic hippocampal cultures.
    Vornov JJ; Tasker RC; Park J
    Exp Neurol; 1995 May; 133(1):7-17. PubMed ID: 7541369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain.
    Azami Tameh A; Clarner T; Beyer C; Atlasi MA; Hassanzadeh G; Naderian H
    Ann Anat; 2013 Oct; 195(5):415-23. PubMed ID: 23711509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of excitatory amino acids in neuropathology].
    Wikinski SI; Acosta GB
    Medicina (B Aires); 1995; 55(4):355-65. PubMed ID: 8728878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glutamate story.
    Watkins JC; Jane DE
    Br J Pharmacol; 2006 Jan; 147 Suppl 1(Suppl 1):S100-8. PubMed ID: 16402093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of glutamate in epilepsy and other CNS disorders.
    Meldrum BS
    Neurology; 1994 Nov; 44(11 Suppl 8):S14-23. PubMed ID: 7970002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors.
    Curras MC; Dingledine R
    Mol Pharmacol; 1992 Mar; 41(3):520-6. PubMed ID: 1372086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The N-methyl-D-aspartate receptor complex. Various sites of regulation and clinical consequences].
    Turski L
    Arzneimittelforschung; 1990 May; 40(5):511-4. PubMed ID: 1974426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit selective decrease of AMPA and metabotropic glutamate receptor mRNA expression in rat brain by systemic administration of the NMDA receptor blocker MK-801.
    Storvik M; Lindén AM; Lakso M; Wong G
    J Mol Neurosci; 2003; 21(1):29-34. PubMed ID: 14500991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical biology of clinically tolerated NMDA receptor antagonists.
    Chen HS; Lipton SA
    J Neurochem; 2006 Jun; 97(6):1611-26. PubMed ID: 16805772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex.
    Kumar KN; Tilakaratne N; Johnson PS; Allen AE; Michaelis EK
    Nature; 1991 Nov; 354(6348):70-3. PubMed ID: 1719427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that functional glutamate receptors are not expressed on rat or human cerebromicrovascular endothelial cells.
    Morley P; Small DL; Murray CL; Mealing GA; Poulter MO; Durkin JP; Stanimirovic DB
    J Cereb Blood Flow Metab; 1998 Apr; 18(4):396-406. PubMed ID: 9538905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glutamate in brain: transmitter and poison].
    Djuricić B
    Glas Srp Akad Nauka Med; 2002; (47):55-76. PubMed ID: 16078441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate receptors, neurotoxicity and neurodegeneration.
    Lau A; Tymianski M
    Pflugers Arch; 2010 Jul; 460(2):525-42. PubMed ID: 20229265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate is the transmitter for N2v retraction phase interneurons of the Lymnaea feeding system.
    Brierley MJ; Yeoman MS; Benjamin PR
    J Neurophysiol; 1997 Dec; 78(6):3408-14. PubMed ID: 9405554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.