These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10737459)
1. The resistance of human monocyte-derived macrophages to Chlamydia pneumoniae infection is enhanced by interferon-gamma. Airenne S; Surcel HM; Bloigu A; Laitinen K; Saikku P; Laurila A APMIS; 2000 Feb; 108(2):139-44. PubMed ID: 10737459 [TBL] [Abstract][Full Text] [Related]
2. In vitro infection and pathogenesis of Chlamydia pneumoniae in endovascular cells. Quinn TC; Gaydos CA Am Heart J; 1999 Nov; 138(5 Pt 2):S507-11. PubMed ID: 10539860 [TBL] [Abstract][Full Text] [Related]
3. IFN-gamma induced persistent Chlamydia pneumoniae infection in HL and Mono Mac 6 cells: characterization by real-time quantitative PCR and culture. Mannonen L; Kamping E; Penttilä T; Puolakkainen M Microb Pathog; 2004 Jan; 36(1):41-50. PubMed ID: 14643639 [TBL] [Abstract][Full Text] [Related]
4. Divergent modulation of Chlamydia pneumoniae infection cycle in human monocytic and endothelial cells by iron, tryptophan availability and interferon gamma. Bellmann-Weiler R; Martinz V; Kurz K; Engl S; Feistritzer C; Fuchs D; Rupp J; Paldanius M; Weiss G Immunobiology; 2010; 215(9-10):842-8. PubMed ID: 20646782 [TBL] [Abstract][Full Text] [Related]
5. Susceptibility of human monocyte-macrophages to Chlamydia pneumoniae infection in vitro is highly variable and associated with levels of soluble CD14 and C. pneumoniae IgA and human HSP-IgG antibodies in serum. Poikonen K; Lajunen T; Silvennoinen-Kassinen S; Paldanius M; Leinonen M; Saikku P Scand J Immunol; 2008 Mar; 67(3):279-84. PubMed ID: 18194359 [TBL] [Abstract][Full Text] [Related]
6. Growth in vascular cells and cytokine production by Chlamydia pneumoniae. Gaydos CA J Infect Dis; 2000 Jun; 181 Suppl 3():S473-8. PubMed ID: 10839742 [TBL] [Abstract][Full Text] [Related]
7. Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Wolf K; Fischer E; Hackstadt T Infect Immun; 2005 Aug; 73(8):4560-70. PubMed ID: 16040967 [TBL] [Abstract][Full Text] [Related]
8. IFN-alpha beta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection. Rothfuchs AG; Gigliotti D; Palmblad K; Andersson U; Wigzell H; Rottenberg ME J Immunol; 2001 Dec; 167(11):6453-61. PubMed ID: 11714812 [TBL] [Abstract][Full Text] [Related]
9. Atherogenetically relevant cells support continuous growth of Chlamydia pneumoniae. Maass M; Gieffers J; Solbach W Herz; 2000 Mar; 25(2):68-72. PubMed ID: 10829241 [TBL] [Abstract][Full Text] [Related]
10. Macrophages, CD4+ or CD8+ cells are each sufficient for protection against Chlamydia pneumoniae infection through their ability to secrete IFN-gamma. Rothfuchs AG; Kreuger MR; Wigzell H; Rottenberg ME J Immunol; 2004 Feb; 172(4):2407-15. PubMed ID: 14764711 [TBL] [Abstract][Full Text] [Related]
11. In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. Godzik KL; O'Brien ER; Wang SK; Kuo CC J Clin Microbiol; 1995 Sep; 33(9):2411-4. PubMed ID: 7494038 [TBL] [Abstract][Full Text] [Related]
12. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Gaydos CA; Summersgill JT; Sahney NN; Ramirez JA; Quinn TC Infect Immun; 1996 May; 64(5):1614-20. PubMed ID: 8613369 [TBL] [Abstract][Full Text] [Related]
14. Role of IRAK4 and IRF3 in the control of intracellular infection with Chlamydia pneumoniae. Trumstedt C; Eriksson E; Lundberg AM; Yang TB; Yan ZQ; Wigzell H; Rottenberg ME J Leukoc Biol; 2007 Jun; 81(6):1591-8. PubMed ID: 17360955 [TBL] [Abstract][Full Text] [Related]
15. A platform for studying the transfer of Chlamydia pneumoniae infection between respiratory epithelium and phagocytes. Kortesoja M; Trofin RE; Hanski L J Microbiol Methods; 2020 Apr; 171():105857. PubMed ID: 32006529 [TBL] [Abstract][Full Text] [Related]
16. Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection. Peters J; Hess S; Endlich K; Thalmann J; Holzberg D; Kracht M; Schaefer M; Bartling G; Klos A Cell Microbiol; 2005 Aug; 7(8):1099-108. PubMed ID: 16008577 [TBL] [Abstract][Full Text] [Related]
17. Acquired immunity to Chlamydia pneumoniae is dependent on gamma interferon in two mouse strains that initially differ in this respect after primary challenge. Vuola JM; Puurula V; Anttila M; Mäkelä PH; Rautonen N Infect Immun; 2000 Feb; 68(2):960-4. PubMed ID: 10639472 [TBL] [Abstract][Full Text] [Related]
18. Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae. Rottenberg ME; Gigliotti Rothfuchs A; Gigliotti D; Ceausu M; Une C; Levitsky V; Wigzell H J Immunol; 2000 May; 164(9):4812-8. PubMed ID: 10779789 [TBL] [Abstract][Full Text] [Related]
19. Host cell responses to Chlamydia pneumoniae in gamma interferon-induced persistence overlap those of productive infection and are linked to genes involved in apoptosis, cell cycle, and metabolism. Eickhoff M; Thalmann J; Hess S; Martin M; Laue T; Kruppa J; Brandes G; Klos A Infect Immun; 2007 Jun; 75(6):2853-63. PubMed ID: 17353287 [TBL] [Abstract][Full Text] [Related]