These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

866 related articles for article (PubMed ID: 10737860)

  • 21. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S; Lazard M; Delort F; Blanquet S; Plateau P
    J Mol Biol; 1998 May; 278(4):801-13. PubMed ID: 9614943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anticodon G recognition by tRNA synthetases mimics the tRNA core.
    Klipcan L; Safro M; Schimmel P
    Trends Biochem Sci; 2013 May; 38(5):229-32. PubMed ID: 23266103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D
    Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme.
    Bessho Y; Hodgson DR; Suga H
    Nat Biotechnol; 2002 Jul; 20(7):723-8. PubMed ID: 12089559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The new aspects of aminoacyl-tRNA synthetases.
    Szymański M; Deniziak M; Barciszewski J
    Acta Biochim Pol; 2000; 47(3):821-34. PubMed ID: 11310981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme.
    Xiao H; Murakami H; Suga H; Ferré-D'Amaré AR
    Nature; 2008 Jul; 454(7202):358-61. PubMed ID: 18548004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition of tRNAs by aminoacyl-tRNA synthetases.
    Cavarelli J; Moras D
    FASEB J; 1993 Jan; 7(1):79-86. PubMed ID: 8422978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases.
    Rodin SN; Rodin AS
    Heredity (Edinb); 2008 Apr; 100(4):341-55. PubMed ID: 18322459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Recognition between tRNAs and aminoacyl-tRNA-synthetases of different specificities].
    Bonne Zh; Kern D; Ebel' ZhP
    Mol Biol (Mosk); 1975; 9(1):48-54. PubMed ID: 1219372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Species-specific differences in the operational RNA code for aminoacylation of tRNAPro.
    Stehlin C; Burke B; Yang F; Liu H; Shiba K; Musier-Forsyth K
    Biochemistry; 1998 Jun; 37(23):8605-13. PubMed ID: 9622512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain.
    Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R
    J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase.
    Glasfeld E; Landro JA; Schimmel P
    Biochemistry; 1996 Apr; 35(13):4139-45. PubMed ID: 8672449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations.
    Ryckelynck M; Giegé R; Frugier M
    Biochimie; 2005; 87(9-10):835-45. PubMed ID: 15925436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization.
    Sissler M; Lorber B; Messmer M; Schaller A; Pütz J; Florentz C
    Methods; 2008 Feb; 44(2):176-89. PubMed ID: 18241799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dimer formation by tRNAs.
    Kholod NS
    Biochemistry (Mosc); 1999 Mar; 64(3):298-306. PubMed ID: 10205299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases.
    Perona JJ; Hadd A
    Biochemistry; 2012 Nov; 51(44):8705-29. PubMed ID: 23075299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomics and the evolution of aminoacyl-tRNA synthesis.
    Ruan B; Ahel I; Ambrogelly A; Becker HD; Bunjun S; Feng L; Tumbula-Hansen D; Ibba M; Korencic D; Kobayashi H; Jacquin-Becker C; Mejlhede N; Min B; Raczniak G; Rinehart J; Stathopoulos C; Li T; Söll D
    Acta Biochim Pol; 2001; 48(2):313-21. PubMed ID: 11732603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.