These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10737941)

  • 1. Conversion of yeast phosphoglycerate kinase into amyloid-like structure.
    Damaschun G; Damaschun H; Fabian H; Gast K; Kröber R; Wieske M; Zirwer D
    Proteins; 2000 May; 39(3):204-11. PubMed ID: 10737941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase.
    Osváth S; Jäckel M; Agócs G; Závodszky P; Köhler G; Fidy J
    Proteins; 2006 Mar; 62(4):909-17. PubMed ID: 16353200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of amyloid protofibrils via critical oligomers--a novel pathway of amyloid formation.
    Modler AJ; Gast K; Lutsch G; Damaschun G
    J Mol Biol; 2003 Jan; 325(1):135-48. PubMed ID: 12473457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of functional enzyme from amyloid fibrils.
    Agócs G; Solymosi K; Varga A; Módos K; Kellermayer M; Závodszky P; Fidy J; Osváth S
    FEBS Lett; 2010 Mar; 584(6):1139-42. PubMed ID: 20132817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold denaturation-induced conformational changes in phosphoglycerate kinase from yeast.
    Damaschun G; Damaschun H; Gast K; Misselwitz R; Müller JJ; Pfeil W; Zirwer D
    Biochemistry; 1993 Aug; 32(30):7739-46. PubMed ID: 8347582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization of proteins into amyloid protofibrils shares common critical oligomeric states but differs in the mechanisms of their formation.
    Modler AJ; Fabian H; Sokolowski F; Lutsch G; Gast K; Damaschun G
    Amyloid; 2004 Dec; 11(4):215-31. PubMed ID: 15678757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates.
    Khurana R; Gillespie JR; Talapatra A; Minert LJ; Ionescu-Zanetti C; Millett I; Fink AL
    Biochemistry; 2001 Mar; 40(12):3525-35. PubMed ID: 11297418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.
    Papanikolopoulou K; Schoehn G; Forge V; Forsyth VT; Riekel C; Hernandez JF; Ruigrok RW; Mitraki A
    J Biol Chem; 2005 Jan; 280(4):2481-90. PubMed ID: 15513921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the folding and misfolding energy landscapes of phosphoglycerate kinase.
    Agócs G; Szabó BT; Köhler G; Osváth S
    Biophys J; 2012 Jun; 102(12):2828-34. PubMed ID: 22735533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of environmental conditions on aggregation and fibril formation of barstar.
    Gast K; Modler AJ; Damaschun H; Kröber R; Lutsch G; Zirwer D; Golbik R; Damaschun G
    Eur Biophys J; 2003 Dec; 32(8):710-23. PubMed ID: 12898068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein.
    Schlumpberger M; Wille H; Baldwin MA; Butler DA; Herskowitz I; Prusiner SB
    Protein Sci; 2000 Mar; 9(3):440-51. PubMed ID: 10752606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy.
    Langkilde AE; Morris KL; Serpell LC; Svergun DI; Vestergaard B
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):882-95. PubMed ID: 25849399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the C-terminal 28 residues of beta2-microglobulin in amyloid fibril formation.
    Ivanova MI; Gingery M; Whitson LJ; Eisenberg D
    Biochemistry; 2003 Nov; 42(46):13536-40. PubMed ID: 14622000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Chaffotte A; Minard P; Yon JM
    Protein Sci; 1992 Nov; 1(11):1485-93. PubMed ID: 1303767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of dynamic light scattering to studies of protein folding kinetics.
    Gast K; Damaschun G; Misselwitz R; Zirwer D
    Eur Biophys J; 1992; 21(5):357-62. PubMed ID: 1483411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is Congo red an amyloid-specific dye?
    Khurana R; Uversky VN; Nielsen L; Fink AL
    J Biol Chem; 2001 Jun; 276(25):22715-21. PubMed ID: 11410601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid amyloid fiber formation from the fast-folding WW domain FBP28.
    Ferguson N; Berriman J; Petrovich M; Sharpe TD; Finch JT; Fersht AR
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9814-9. PubMed ID: 12897238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.
    Osváth S; Köhler G; Závodszky P; Fidy J
    Protein Sci; 2005 Jun; 14(6):1609-16. PubMed ID: 15883189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid formation by salmon calcitonin.
    Gilchrist PJ; Bradshaw JP
    Biochim Biophys Acta; 1993 Aug; 1182(1):111-4. PubMed ID: 8347681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways.
    El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J
    FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.