These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10738296)

  • 1. Methylene blue based protein solder for vascular anastomoses: an in vitro burst pressure study.
    Birch JF; Mandley DJ; Williams SL; Worrall DR; Trotter PJ; Wilkinson F; Bell PR
    Lasers Surg Med; 2000; 26(3):323-9. PubMed ID: 10738296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylene blue soldered microvascular anastomoses in vivo.
    Birch JF; Bell PR
    Eur J Vasc Endovasc Surg; 2002 Apr; 23(4):325-30. PubMed ID: 11991694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs.
    Hoffman GT; Byrd BD; Soller EC; Heintzelman DL; McNally-Heintzelman KM
    Biomed Sci Instrum; 2003; 39():12-7. PubMed ID: 12724861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal parameters for laser tissue soldering: II. Premixed versus separate dye-solder techniques.
    McNally KM; Sorg BS; Chan EK; Welch AJ; Dawes JM; Owen ER
    Lasers Surg Med; 2000; 26(4):346-56. PubMed ID: 10805939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human albumin solders for clinical application during laser tissue welding.
    Poppas DP; Wright EJ; Guthrie PD; Shlahet LT; Retik AB
    Lasers Surg Med; 1996; 19(1):2-8. PubMed ID: 8836990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption properties of alternative chromophores for use in laser tissue soldering applications.
    Byrd BD; Heintzelman DL; McNally-Heintzelman KM
    Biomed Sci Instrum; 2003; 39():6-11. PubMed ID: 12724860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel solid protein solder designs for laser-assisted tissue repair.
    McNally KM; Sorg BS; Welch AJ
    Lasers Surg Med; 2000; 27(2):147-57. PubMed ID: 10960821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of indocyanine green in polycaprolactone fibers using blend electrospinning for in vivo laser-assisted vascular anastomosis.
    Schönfeld A; Kabra ZM; Constantinescu M; Bosshardt D; Stoffel MH; Peters K; Frenz M
    Lasers Surg Med; 2017 Dec; 49(10):928-939. PubMed ID: 28699660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-enhanced protein solders and patches in laser-assisted tissue welding.
    Small W; Heredia NJ; Maitland DJ; Da Silva LB; Matthews DL
    J Clin Laser Med Surg; 1997; 15(5):205-8. PubMed ID: 9612171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sutureless microvascular anastomoses by a biodegradable laser-activated solid protein solder.
    Maitz PK; Trickett RI; Dekker P; Tos P; Dawes JM; Piper JA; Lanzetta M; Owen ER
    Plast Reconstr Surg; 1999 Nov; 104(6):1726-31. PubMed ID: 10541175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun poly(ɛ-caprolactone) scaffold for suture-free solder-mediated laser-assisted vessel repair.
    Pabittei DR; Heger M; Balm R; Meijer HE; de Mol B; Beek JF
    Photomed Laser Surg; 2011 Jan; 29(1):19-25. PubMed ID: 20738168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraluminal laser light source and external solder: in vivo evaluation of a new technique for microvascular anastomosis.
    Ott B; Constantinescu MA; Erni D; Banic A; Schaffner T; Frenz M
    Lasers Surg Med; 2004; 35(4):312-6. PubMed ID: 15493022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term investigations of laser-assisted microvascular anastomoses with the 1.318-micron Nd:YAG laser.
    Ulrich F; Dürselen R; Schober R
    Lasers Surg Med; 1988; 8(2):104-7. PubMed ID: 3367674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubility study of albumin solders for laser tissue-welding.
    Lauto A; Poppas DP; Murrell GA
    Lasers Surg Med; 1998; 23(5):258-62. PubMed ID: 9888321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal parameters for laser tissue soldering. Part I: tensile strength and scanning electron microscopy analysis.
    McNally KM; Sorg BS; Chan EK; Welch AJ; Dawes JM; Owen ER
    Lasers Surg Med; 1999; 24(5):319-31. PubMed ID: 10406472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of laser wavelength and protein solder concentration on acute tissue repair using laser welding: initial results in a canine ureter model.
    Wright EJ; Poppas DP
    Tech Urol; 1997; 3(3):176-81. PubMed ID: 9422452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of skin tissue soldering using diode laser and indocyanine green: in vitro studies.
    Khosroshahi ME; Nourbakhsh MS; Saremi S; Tabatabaee F
    Lasers Med Sci; 2010 Mar; 25(2):207-12. PubMed ID: 19449084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The study of a light-activated albumin protein solder to bond layers of porcine small intestinal submucosa.
    Ware MH; Buckley CA
    Biomed Sci Instrum; 2003; 39():1-5. PubMed ID: 12724859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Results of laser tissue soldering in vasovasostomy and epididymovasostomy: experience in the rat animal model.
    Seaman EK; Kim ED; Kirsch AJ; Pan YC; Lewitton S; Lipshultz LI
    J Urol; 1997 Aug; 158(2):642-5. PubMed ID: 9224384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary study of laser welding for aortic dissection in a porcine model using a diode laser with indocyanine green.
    Fujita M; Morimoto Y; Ohmori S; Usami N; Arai T; Maehara T; Kikuchi M
    Lasers Surg Med; 2003; 32(5):341-5. PubMed ID: 12766955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.