BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10738311)

  • 41. Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines.
    Kozbor D; Croce CM
    Cancer Res; 1984 Feb; 44(2):438-41. PubMed ID: 6692352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Correlation between int-2 oncogene amplification and increased tumor size in breast cancer].
    Chernitsa OI; Laur OI; Imianitov EN; Cheburkin IV; Belogubova EV; Iliushik ES; Zaĭtseva OA; Togo AV; Ivanova OA; Kniazev PG; Semiglazov VF; Khanson KP
    Vopr Onkol; 1996; 42(4):27-9. PubMed ID: 8928453
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of genetic aberrations on chromosomal region 8q21-24 identifies E2F5 as an oncogene with copy number gain in prostate cancer.
    Zhao J; Wu XY; Ling XH; Lin ZY; Fu X; Deng YH; He HC; Zhong W
    Med Oncol; 2013 Mar; 30(1):465. PubMed ID: 23377984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Varying degrees of amplification of the N-ras oncogene in the human breast cancer cell line MCF-7.
    Graham KA; Richardson CL; Minden MD; Trent JM; Buick RN
    Cancer Res; 1985 May; 45(5):2201-5. PubMed ID: 3986769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Novel transforming genes detected in human stomach cancer cells].
    Simizu K
    Gan To Kagaku Ryoho; 1985 Mar; 12(3 Pt 2):641-5. PubMed ID: 3985638
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA.
    Kadota M; Sato M; Duncan B; Ooshima A; Yang HH; Diaz-Meyer N; Gere S; Kageyama S; Fukuoka J; Nagata T; Tsukada K; Dunn BK; Wakefield LM; Lee MP
    Cancer Res; 2009 Sep; 69(18):7357-65. PubMed ID: 19706770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oncogene may be an important prognostic factor in breast cancer and ovarian cancer.
    Oncology (Williston Park); 1989 Jun; 3(6):148. PubMed ID: 2641500
    [No Abstract]   [Full Text] [Related]  

  • 48. [Importance of oncogenes in tumors of the breast. Results, useful revaluation, perspectives].
    Monier R
    Pathol Biol (Paris); 1990 Oct; 38(8):773. PubMed ID: 2274349
    [No Abstract]   [Full Text] [Related]  

  • 49. [Molecular biological and biochemical features of breast cancer].
    Khanson KP; Bershteĭn LM; Imianitov EN; Tsyrlina EV; Semiglasov VF
    Vestn Ross Akad Med Nauk; 1998; (1):15-9. PubMed ID: 9511435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Site-specific integration of H-ras in transformed rat embryo cells.
    McKenna WG; Nakahara K; Muschel RJ
    Science; 1988 Sep; 241(4871):1325-8. PubMed ID: 3045971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oncogenes without a Neighboring Tumor-Suppressor Gene Are More Prone to Amplification.
    Wu WK; Li X; Wang X; Dai RZ; Cheng AS; Wang MH; Kwong T; Chow TC; Yu J; Chan MT; Wong SH
    Mol Biol Evol; 2017 Apr; 34(4):903-907. PubMed ID: 28087780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oncogenes and human breast cancer.
    Hall JM; Zuppan PJ; Anderson LA; Huey B; Carter C; King MC
    Am J Hum Genet; 1989 Apr; 44(4):577-84. PubMed ID: 2564734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma.
    Balleine RL; Fejzo MS; Sathasivam P; Basset P; Clarke CL; Byrne JA
    Genes Chromosomes Cancer; 2000 Sep; 29(1):48-57. PubMed ID: 10918393
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas.
    Parris TZ; Kovács A; Hajizadeh S; Nemes S; Semaan M; Levin M; Karlsson P; Helou K
    Oncogenesis; 2014 Mar; 3(3):e95. PubMed ID: 24662924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution.
    Verhaak RGW; Bafna V; Mischel PS
    Nat Rev Cancer; 2019 May; 19(5):283-288. PubMed ID: 30872802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcription factor encoding oncogenes.
    Lucibello FC; Müller R
    Rev Physiol Biochem Pharmacol; 1992; 119():225-57. PubMed ID: 1604154
    [No Abstract]   [Full Text] [Related]  

  • 57. E2F5 Targeted by Let-7d-5p Facilitates Cell Proliferation, Metastasis and Immune Escape in Gallbladder Cancer.
    Chen L; Guo S; Zhang D; Li X; Chen J
    Dig Dis Sci; 2024 Feb; 69(2):463-475. PubMed ID: 38087129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities.
    Weidle UH; Birzele F
    Cancer Genomics Proteomics; 2023 Dec; 20(6suppl):646-668. PubMed ID: 38035705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis.
    Qi JC; Yang Z; Lin T; Ma L; Wang YX; Zhang Y; Gao CC; Liu KL; Li W; Zhao AN; Shi B; Zhang H; Wang DD; Wang XL; Wen JK; Qu CB
    J Exp Clin Cancer Res; 2021 Jan; 40(1):2. PubMed ID: 33390186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circular RNA ABCB10 promotes non-small cell lung cancer progression by increasing E2F5 expression through sponging miR-584-5p.
    Ma D; Qin Y; Huang C; Chen Y; Han Z; Zhou X; Liu H
    Cell Cycle; 2020 Jul; 19(13):1611-1620. PubMed ID: 32420810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.