These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10738804)

  • 1. The mechanical waveform of the basilar membrane. III. Intensity effects.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1497-507. PubMed ID: 10738804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical waveform of the basilar membrane. II. From data to models--and back.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1487-96. PubMed ID: 10738803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanical waveform of the basilar membrane. I. Frequency modulations ("glides") in impulse responses and cross-correlation functions.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 1997 Jun; 101(6):3583-92. PubMed ID: 9193046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics.
    Shera CA
    J Acoust Soc Am; 2001 Jul; 110(1):332-48. PubMed ID: 11508959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical waveform of the basilar membrane. IV. Tone and noise stimuli.
    de BE; Nuttall AL
    J Acoust Soc Am; 2002 Feb; 111(2):979-89. PubMed ID: 11863200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics.
    Meaud J; Grosh K
    J Acoust Soc Am; 2010 Mar; 127(3):1411-21. PubMed ID: 20329841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basilar membrane velocity noise.
    Nuttall AL; Guo M; Ren T; Dolan DF
    Hear Res; 1997 Dec; 114(1-2):35-42. PubMed ID: 9447916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea.
    Patuzzi R; Sellick PM
    J Acoust Soc Am; 1983 Dec; 74(6):1734-41. PubMed ID: 6655131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment.
    Preyer S; Gummer AW
    Audiol Neurootol; 1996; 1(1):3-11. PubMed ID: 9390786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects.
    Summers V; de Boer E; Nuttall AL
    J Acoust Soc Am; 2003 Jul; 114(1):294-306. PubMed ID: 12880042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli.
    Ramamoorthy S; Deo NV; Grosh K
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2758-73. PubMed ID: 17550176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.
    Meaud J; Grosh K
    Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea.
    Murugasu E; Russell IJ
    J Neurosci; 1996 Jan; 16(1):325-32. PubMed ID: 8613799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation.
    Markin VS; Hudspeth AJ
    Biophys J; 1995 Jul; 69(1):138-47. PubMed ID: 7669891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No sharpening? a challenge for cochlear mechanics.
    de Boer E
    J Acoust Soc Am; 1983 Feb; 73(2):567-73. PubMed ID: 6841795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic enhancement of electrically evoked otoacoustic emissions reflects basilar membrane tuning: a model.
    Xue S; Mountain DC; Hubbard AE
    Hear Res; 1995 Nov; 91(1-2):93-100. PubMed ID: 8647730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.